Cite

[1] Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresource Technol. 2009;100:5478-5484. DOI: 10.1016/j.biortech.2008.12.046.10.1016/j.biortech.2008.12.04619217772Open DOISearch in Google Scholar

[2] Lantz M, Börjesson P. Greenhouse gas and energyassessment of the biogas from co-digestion injected into the natural gas grid: A Swedish case-study including effects on soil properties. Renew Energy. 2014;7:387-395. DOI: 10.1016/j.renene.2014.05.048.10.1016/j.renene.2014.05.048Open DOISearch in Google Scholar

[3] Mauky E, Fabian Jacobi H, Liebetrau J, Nelles M. Flexible biogas production for demand-driven energy supply-Feeding strategies and types of substrates. Bioresource Technol. 2014;178:262-269. DOI: 10.1016/j.biortech.2014.08.12310.1016/j.biortech.2014.08.12325280601Open DOISearch in Google Scholar

[4] Wu XF, Wu XD, Li JS, Xia XH, Mi T, Yang Q, et al. Ecological accounting for an integrated “pig-biogas-fish” system based on emergetic indicators. Ecol Indicators. 2014;47:189-197. DOI: 10.1016/j.ecolind.2014.04.033.10.1016/j.ecolind.2014.04.033Open DOISearch in Google Scholar

[5] Poeschl M, Ward S, Owende P. Environmental impacts of biogas deployment - Part II: life cycle assessment of multiple production and utilization pathways. J Cleaner Production. 2012;24,184-201. DOI: 10.1016/j.jclepro.2011.10.030.10.1016/j.jclepro.2011.10.030Open DOISearch in Google Scholar

[6] Persson M, Jönsson O, Wellinger A. Biogas upgrading to vehicle fuel standards and grid injection. IEA Bioenergy, Task 37; 2006. http://task37.ieabioenergy.com/files/daten-redaktion/download/publi-task37/upgrading_report_final.pdfSearch in Google Scholar

[7] Ryckebosch E, Drouillon H, Vervaeren H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy. 2011;35:1633-1645. DOI: 10.1016/j.biombioe.2011.02.03310.1016/j.biombioe.2011.02.033Open DOISearch in Google Scholar

[8] Marcato CE, Pinelli E, Pouech P, Winterton P, Guiresse M. Particle size and metal distribution in anaerobically digested pig slurry. Bioresource Technol. 2008;99(7):2340-2348. DOI: 10.1016/j.biortech.2007.05.013.10.1016/j.biortech.2007.05.01317600701Search in Google Scholar

[9] Menardo S, Gioelli F, Balsari P. The methane yield of digestate: Effect of organic loading rate, hydraulic retention time and plant feeding. Bioresource Technol. 2011;102(3):2348-2351. DOI: 10.1016/j.biortech.2010.10.094.10.1016/j.biortech.2010.10.09421071217Open DOISearch in Google Scholar

[10] Govasmark E, Stäb J, Holen B, Hoornstra D, Nesbakk T, Salkinoja-Salonen M. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use. Waste Manage. 2011;31(12):2577-2583. DOI: 10.1016/j.wasman.2011.07.025.10.1016/j.wasman.2011.07.02521865025Search in Google Scholar

[11] Rassi S, Läntelä J, Rintala J. Trace compounds affecting biogas energy utilisation - A review. Energy Convers Manage. 2011;52(12):3369-3375. DOI: 10.1016/j.enconman.2011.07.005.10.1016/j.enconman.2011.07.005Open DOISearch in Google Scholar

[12] Plawsky JL, Wang G, William N. Kinetic model for the pyrolysis of polysiloxane polymers to ceramic composites. AIChE J. 2002;48(10):2315-2323. DOI: 10.1002/aic.690481021.10.1002/aic.690481021Search in Google Scholar

[13] Sevimoğlu O, Tansel B. Effect of persistent trace compounds in landfill gas on engine performance during energy recovery: a case study. Waste Manage. 2013;33(1):74-80. DOI: 10.1016/j.wasman.2012.08.016.10.1016/j.wasman.2012.08.016Open DOISearch in Google Scholar

[14] Sevimoğlu O, Tansel B. Composition and source identification of deposits forming in landfill gas (LFG) engines and effect of activated carbon treatment on deposit composition. J Environ Manage. 2013;128:300-305. DOI: 10.1016/j.jenvman.2013.05.029.10.1016/j.jenvman.2013.05.029Open DOISearch in Google Scholar

[15] Huguen P, Le Saux G. Perspectives for a European standard on biomethane: a Biogasmax proposal. Biogasmax; 2010. http://www.transport-research.info/sites/default/files/project/documents/20120601_135059_69928_d3_8_new_lmcu_bgx_eu_standard_14dec10_vf__077238500_0948_26012011.pdf.Search in Google Scholar

[16] Dewil R, Appels L, Baeyens J. Energy use of biogas hampered by the presence of siloxanes. Energy Convers Manage. 2005;47:1711-1722. DOI: 10.1016/j.enconman.2005.10.016.10.1016/j.enconman.2005.10.016Open DOISearch in Google Scholar

[17] Rossol D, Schmelz KG. Siloxane im Faulgas. GWF, Wasser/Abwasser. 2005;146(1):55-61.Search in Google Scholar

[18] Callander IJ, Barford JP. Recent advances in anaerobic digestion technology. Process Biochem. 1983;18:24-30.Search in Google Scholar

[19] Stams AJM, Oude-Elferink SJWH, Westerman P. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria. In: Ahring BK, editor. Biomethanation I: Adv Biochem Eng/Biotechnol. 2003;81:31-56. DOI: 10.1007/3-540-45839-5_2.10.1007/3-540-45839-5_2Open DOISearch in Google Scholar

[20] Tambone F, Genevini P, D’Imporzano G, Adani F. Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresource Technol. 2009;100(12):3140-3142. DOI: 10.1016/j.biortech.2009.02.012.10.1016/j.biortech.2009.02.012Open DOISearch in Google Scholar

[21] Gómez X, Cuetos MJ, García AI, Morán A. An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes. J Hazard Mater. 2007;49:(1)97-105. DOI: 10.1016/j.jhazmat.2007.03.049.10.1016/j.jhazmat.2007.03.049Open DOISearch in Google Scholar

[22] Mandile AJ, Hutton AC. Quantitative X-ray diffraction analysis of mineral and organic phases in organic-rich rocks. Int J Coal Geol. 1995;28:51-69. DOI: 10.1016/0166-5162(95)00004-W.10.1016/0166-5162(95)00004-Open DOISearch in Google Scholar

[23] Bish DL, Post JE. Quantitative mineralogical analysis using the Rietveld full pattern fitting method. Amer Mineralogist. 1993;78:932-940. https://pdfs.semanticscholar.org/298d/5765bc8d4001f388526632b2104206416634.pdf.Search in Google Scholar

[24] Bish DL, Post JE, Editors. Modern Powder Diffraction: Reviews in Mineralogy. Washington, D.C.: Mineralogical Society of America; 1989. ISBN-13: 978-0-939950-24-9.Search in Google Scholar

[25] Bish DL, Chipera SJ. Problems and solutions in quantitative analysis of complex mixtures by X-ray powder diffraction. In: Barrett C, Charles S, editors. Advances in X-ray Analysis, 1988;31:295-308. Indiana, USA: Plenum Pub Co. ISBN-13: 978-0306422874.10.1154/S0376030800022102Search in Google Scholar

[26] Bish DL, Howard SA. Quantitative phase analysis using the Rietveld method. J Appl Crystallog. 1988;21:86-91. https://journals.iucr.org/j/issues/1988/02/00/mo0014/mo0014.pdf.10.1107/S0021889887009415Search in Google Scholar

[27] Álvarez-Flórez J, Egusquiza E. Analysis of damage caused by siloxanes in stationary reciprocating internal combustion engines operating with landfill gas. Eng Failure Analysis. 2015;20:29-30. DOI: 10.1016/j.engfailanal.2015.01.010.10.1016/j.engfailanal.2015.01.010Open DOISearch in Google Scholar

eISSN:
1898-6196
Language:
English