Open Access

Nitrogen Transportation and Transformation Under Different Soil Water and Salinity Conditions


Cite

[1] Flowers T, Yeo A. Breeding for salinity resistance in crop plants: where next? Functional Plant Biology. 1995;22(6):875-884. DOI: 10.1071/PP9950875.10.1071/PP9950875Search in Google Scholar

[2] Dai X, Huo Z, Wang H. Simulation for response of crop yield to soil moisture and salinity with artificial neural network. Field Crop Res. 2011;121(3):441-449. DOI: 10.1016/j.fcr.2011.01.016.10.1016/j.fcr.2011.01.016Search in Google Scholar

[3] Pereira L, Goncalves J, Dong B, Mao Z, Fang S. Assessing basin irrigation and scheduling strategies for saving irrigation water and controlling salinity in the upper Yellow River Basin, China. Agr Water Manage. 2007;93(3):109-122. DOI: 10.1016/j.agwat.2007.07.004.10.1016/j.agwat.2007.07.004Search in Google Scholar

[4] Li J, Pu L, Han M, Zhu M, Zhang R, Xiang Y. Soil salinization research in China: Advances and prospects. J Geograph Sci. 2014;24(5):943-960. DOI: 10.1007/s11442-014-1130-2.10.1007/s11442-014-1130-2Search in Google Scholar

[5] Meng CH, Yang JZ. Experimental research on the radical selection of autumn irrigation norm in Hetao Irrigation District, China. Rural Water Res Hydropower. 2002;5:23-25. DOI: 10.3969/j.issn.1007-2284.2002.05.009.Search in Google Scholar

[6] Feng Z, Wang X, Feng Z. Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China. Agr Water Manage. 2005;71(2):131-143. DOI: 10.1016/j.agwat.2004.07.001.10.1016/j.agwat.2004.07.001Search in Google Scholar

[7] Zhu Z, Chen D. Nitrogen fertilizer use in China - contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosys. 2002;63(2-3):117-127. DOI: 10.1023/A:1021107026067.10.1023/A:1021107026067Search in Google Scholar

[8] Zhang W, Tian Z, Zhang N, Li X. Nitrate pollution of groundwater in northern China. Agricult Ecosyst Environ. 1996;59(3):223-231. DOI: 10.1016/0167-8809(96)01052-3.10.1016/0167-8809(96)01052-3Search in Google Scholar

[9] Zhang S, Gao P, Tong Y, Norse D, Lu Y, Powlson D. Overcoming nitrogen fertilizer over-use through technical and advisory approaches: A case study from Shaanxi Province, northwest China. Agricult Ecosyst Environ. 2015. DOI: 10.1016/j.agee.2015.03.002.10.1016/j.agee.2015.03.002Search in Google Scholar

[10] Al-Busaidi KT, Buerkert A, Joergensen RG. Carbon and nitrogen mineralization at different salinity levels in Omani low organic matter soils. J Arid Environ. 2014;100:106-110. DOI: 10.1016/j.jaridenv.2013.10.013.10.1016/j.jaridenv.2013.10.013Search in Google Scholar

[11] Baligar V, Fageria N. Nutrient Use Efficiency in Plants: An Overview, in Nutrient Use Efficiency: from Basics to Advances. India: Springer; 2015. 1-14. DOI 10.1007/978-81-322-2169-2_1.10.1007/978-81-322-2169-2_1Search in Google Scholar

[12] Dzurella K, Pettygrove G, Fryjoff-Hung A, Hollander A, Harter T. Potential to assess nitrate leaching vulnerability of irrigated cropland. J Soil Water Conserv. 2015;70(1):63-72. DOI: 10.2489/jswc.70.1.63.10.2489/jswc.70.1.63Search in Google Scholar

[13] Valkama E, Lemola R, Känkänen H, Turtola E. Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries. Agricult Ecosyst Environ. 2015;203:93-101. DOI: 10.1016/j.agee.2015.01.023.10.1016/j.agee.2015.01.023Search in Google Scholar

[14] Gilliam J, Logan TJ, Broadbent F. Fertilizer use in relation to the environment. Fertilizer technology and use. 1985 (fertilizertechn): 561-588. DOI:10.2136/1985.Search in Google Scholar

[15] Silva R, Jorgensen E, Holub S, Gonsoulin M. Relationships between culturable soil microbial populations and gross nitrogen transformation processes in a clay loam soil across ecosystems. Nutr Cycl Agroecosys. 2005;71(3):259-270. DOI: 10.1007/s10705-004-6378-y.10.1007/s10705-004-6378-ySearch in Google Scholar

[16] Purnomo E, Black A, Conyers M. The distribution of net nitrogen mineralisation within surface soil. 2. Factors influencing the distribution of net N mineralisation. Soil Res. 2000;38(3):643-652. DOI: 10.1071/SR99059.10.1071/SR99059Search in Google Scholar

[17] Kern J, Kreibich H, Darwich A, McClain M. Nitrogen dynamics on the Amazon flood plain in relation to the flood pulse of the Solimões River. The ecohydrology of South American rivers and wetlands. 2002:35-47. DOI: 10.5876/9781607323693.c022.10.5876/9781607323693.c022Search in Google Scholar

[18] Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biol. 2009;15(4):808-824. DOI: 10.1111/j.1365-2486.2008.01681.x.10.1111/j.1365-2486.2008.01681.xSearch in Google Scholar

[19] Rietz DN, Haynes RJ. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem. 2003;35(6):845-854. DOI: 10.1016/S0038-0717(03)00125-1.10.1016/S0038-0717(03)00125-1Search in Google Scholar

[20] Pathak H, Rao D. Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biol Biochem. 1998;30(6):695-702. DOI: 10.1016/S0038-0717(97)00208-3.10.1016/S0038-0717(97)00208-3Search in Google Scholar

[21] Khoi CM, Guong VT, Merckx R. Predicting the release of mineral nitrogen from hypersaline pond sediments used for brine shrimp Artemia franciscana production in the Mekong Delta. Aquaculture. 2006;257(1):221-231. DOI: 10.1016/j.aquaculture.2006.02.075.10.1016/j.aquaculture.2006.02.075Search in Google Scholar

[22] Simunek J, Huang K, Van Genuchten MT. The HYDRUS-ET Software Package for Simulating the One-Dimentional Movement of Water, Heat and Multiple Solutes in Variably-Saturated Media, Version 1.1. 1997: Bratislava: Inst. Hydrology Slovak Acad. Sci. https://www.pc-progress.com/en/Default.aspx?Downloads.Search in Google Scholar

[23] Gonçalves MC, Šimůnek J, Ramos TB, Martins JC, Neves MJ, Pires FP. Multicomponent solute transport in soil lysimeters irrigated with waters of different quality. Water Resour Res. 2006;42:W08401. DOI: 10.1029/2005WR004802.10.1029/2005WR004802Search in Google Scholar

[24] Forkutsa I, Sommer R, Shirokova Y, Lamers J, Kienzler K, Tischbein B, et al. Modeling irrigated cotton with shallow groundwater in the Aral Sea Basin of Uzbekistan: I. Water dynamics. Irrigation Sci. 2009;27(4):331-346. DOI: 10.1007/s00271-009-0148-1.10.1007/s00271-009-0148-1Search in Google Scholar

[25] Ngoc MN, Dultz S, Kasbohm J. Simulation of retention and transport of copper, lead and zinc in a paddy soil of the Red River Delta, Vietnam. Agricult Ecosyst Environ. 2009;129(1):8-16. DOI: 10.1016/j.agee.2008.06.008.10.1016/j.agee.2008.06.008Search in Google Scholar

[26] Hachicha M, Mansour M, Rejeb S, Mougou R, Askri H, Abdelgawad J. Applied Research for the Utilization of Brackish/Saline Water in Center of Tunisia: water use. salinity evolution and crop response. Proceedings of International Salinity Forum. 2005. Riverside. http://www.worldcat.org/title/international-salinity-forum-managing-saline-soils-and-water-science-technology-and-social-issues-april-25-27-2005-salinity-forum-april-28-2005-farm-tour-riverside-convention-center-riverside-california/oclc/224317463.Search in Google Scholar

[27] Zeng W, Xu C, Wu J, Huang J, Ma T. Effect of salinity on soil respiration and nitrogen dynamics. Ecol Chem Eng S. 2013;20(3):519-530. DOI: 10.2478/eces-2013-0039.10.2478/eces-2013-0039Search in Google Scholar

[28] Šimůnek J, Van Genuchten MT, Sejna M. The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, version 3.0, HYDRUS software series 1. Department of Environmental Sciences, University of California Riverside, Riverside, California. 2005: 270. https://www.pc-progress.com/en/Default.aspx?Downloads.Search in Google Scholar

[29] Doherty J, Brebber L, Whyte P. PEST: Model-independent parameter estimation. Corinda, Australia: Watermark Computing; 1994; 122. http://www.pesthomepage.org/Downloads.php.Search in Google Scholar

[30] Selim H, Iskandar I. Modeling nitrogen transport and transformations in soils: 1. Theoretical considerations. Soil Sci. 1981;131(4):233-241. DOI: 10.1097/00010694-198104000-00007.10.1097/00010694-198104000-00007Search in Google Scholar

[31] Li Y, Šimůnek J, Zhang Z, Jing L, Ni L. Evaluation of nitrogen balance in a direct-seeded-rice field experiment using Hydrus-1D. Agr Water Manage. 2015;148:213-222. DOI: 10.1016/j.agwat.2014.10.010.10.1016/j.agwat.2014.10.010Search in Google Scholar

[32] Tan X, Shao D, Gu W, Liu H. Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D. Agr Water Manage. 2015;150:67-80. DOI: 10.1016/j.agwat.2014.12.005.10.1016/j.agwat.2014.12.005Search in Google Scholar

[33] Mailhol J, Ruelle P, Nemeth I. Impact of fertilisation practices on nitrogen leaching under irrigation. Irrigation Sci. 2001;20(3):139-147. DOI: 10.1007/s002710100038.10.1007/s002710100038Search in Google Scholar

[34] Patrick WH, Mahapatra I. Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv Agron. 1968;20:323-359. DOI: 10.1016/S0065-2113(08)60860-3.10.1016/S0065-2113(08)60860-3Search in Google Scholar

[35] Hale S, Alling V, Martinsen V, Mulder J, Breedveld G, Cornelissen G. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere. 2013;91(11):1612-1619. DOI: 10.1016/j.chemosphere.2012.12.057.10.1016/j.chemosphere.2012.12.05723369636Search in Google Scholar

[36] Noe GB, Krauss KW, Lockaby BG, Conner WH, Hupp CR. The effect of increasing salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal freshwater forested wetlands. Biogeochemistry. 2013;114(1-3):225-244. DOI: 10.1007/s10533-012-9805-1.10.1007/s10533-012-9805-1Search in Google Scholar

[37] Gao H, Bai J, He X, Zhao Q, Lu Q, Wang J. High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh. PloS ONE. 2014;9(4):e95011. DOI: 10.1371/journal.pone.0095011.10.1371/journal.pone.0095011Search in Google Scholar

[38] Rysgaard S, Thastum P, Dalsgaard T, Christensen P B, Sloth N P. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries. 1999;22(1):21-30. DOI: 10.2307/1352923.10.2307/1352923Search in Google Scholar

[39] Tripathi S, Kumari S, Chakraborty A, Gupta A, Chakrabarti K, Bandyapadhyay BK. Microbial biomass and its activities in salt-affected coastal soils. Biol Fert Soils. 2006;42(3):273-277. DOI: 10.1007/s00374-005-0037-6.10.1007/s00374-005-0037-6Search in Google Scholar

[40] Wong VN, Dalal RC, Greene RS. Salinity and sodicity effects on respiration and microbial biomass of soil. Biol Fert Soils. 2008;44(7):943-953. DOI: 10.1007/s00374-008-0279-1.10.1007/s00374-008-0279-1Search in Google Scholar

[41] Chen R, Twilley RR. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries. 1999;22(4):955-970. DOI: 10.2307/1353075.10.2307/1353075Search in Google Scholar

[42] Nkrumah M, Griffith SM, Ahmad N. Lysimeter and field studies on 15N in a tropical soil-transformation of (NH2)2CO-15N in a tropical loam in lysimeter and field plots. Plant Soil. 1989;114:13-18. DOI: 10.1007/BF02203075.10.1007/BF02203075Search in Google Scholar

[43] Hall NS, Paerl HW, Peierls BL, Whipple AC, Rossignol KL. Effects of climatic variability on phytoplankton community structure and bloom development in the eutrophic, microtidal, New River Estuary, North Carolina, USA. Estuarine, Coastal Shelf Sci. 2013;117:70-82. DOI: 10.1016/j.ecss.2012.10.004.10.1016/j.ecss.2012.10.004Search in Google Scholar

[44] Yoshie S, Ogawa T, Makino H, Hirosawa H, Tsuneda S, Hirata A. Characteristics of bacteria showing high denitrification activity in saline wastewater. Lett Appl Microbiol. 2006;42(3):277-283. DOI: 10.1111/j.1472-765X.2005.01839.x.10.1111/j.1472-765X.2005.01839.xSearch in Google Scholar

[45] Laura R. Salinity and nitrogen mineralization in soil. Soil Biol Biochem. 1977;9(5):333-336. DOI: 10.1016/0038-0717(77)90005-0.10.1016/0038-0717(77)90005-0Search in Google Scholar

eISSN:
1898-6196
Language:
English