Open Access

Does Local Application of Strontium Increase Osteogenesis and Biomaterial Osteointegration in Osteoporotic and Other Bone Tissue Conditions: Review of Literature


Cite

1. Andersen OZ, Offermanns V, Sillassen M et al. Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants //. Biomaterials, 2013; 34(24): 5883-589010.1016/j.biomaterials.2013.04.03123672822Search in Google Scholar

2. Atkins GJ, Welldon KJ, Halbout P et al. Strontium ranelate treatment of human primary osteoblasts promotes an osteocyte-like phenotype while eliciting an osteoprotegerin response // Osteoporos Int. 2009; 20(4):653-64Search in Google Scholar

3. Bakker AD, Zandieh-Doulabi B, Klein-Nulend J. Strontium ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts // Bone, 2013; 53(1): 112-119Search in Google Scholar

4. Billström GH, Blom AW, Larsson S et al. Application of scaffolds for bone regeneration strategies: Current trends and future directions // Injury, 2013; 44(1): 28-33Search in Google Scholar

5. Bose S, Fielding G, Tarafder S et al. Understanding of dopant – induced osteogenesis and angiogenesis in calcium phosphate ceramics // Trends in Biotechnology, 2013; 31 (10):594–605.Search in Google Scholar

6. Breart G, Cooper C, Meyer O et al. Osteoporosis and venous thromboembolism: a retrospective cohort study in the UK General Practice Research Database // Osteoporos Int. 2010;21(7):1181-7Search in Google Scholar

7. Caverzasio J, Thouverey C. Activation of FGF receptors is a new mechanism by which strontium ranelate induces osteoblastic cell growth // Cell Physiol Biochem. 2011;27(3-4):243-5010.1159/00032795021471713Search in Google Scholar

8. Chen YW, Feng T, Shi GQ, et al. Interaction of endothelial cells with biodegradable strontium-doped calcium polyphosphate for bone tissue engineering // Applied Surface Science, 2008; 255(2): 331-335Search in Google Scholar

9. Chen YW, Shi GQ, Ding YL et al. In vitro study on the influence of strontium-doped calcium polyphosphate on the angiogenesis-related behaviors of HUVECs // J Mater Sci Mater Med, 2008; 19(7): 2655-2662Search in Google Scholar

10. Cho SW, Yang JY, Her SJ et al. Osteoblast-targeted overexpression of PPARgamma inhibited bone mass gain in male mice and accelerated ovariectomy-induced bone loss in female mice // J Bone Miner Res, 2011; 26(8): 1939-1952Search in Google Scholar

11. Dahl SG, Allain P, Marie PJ et al. Incorporation and distribution of strontium in bone // Bone, 2001; 28:446-453Search in Google Scholar

12. Donneau AF, Reginster JY. Cardiovascular safety of strontium ranelate: real-life assessment in clinical practice // Osteoporos Int. 2014; 25(2):397-8Search in Google Scholar

13. Elgali I, Turri A, Xia W et al. Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events // Acta Biomater, 2016; 29: 409-423Search in Google Scholar

14. Fernández JM, Molinuevo MS, Sedlinsky C, Strontium ranelate prevents the deleterious action of advanced glycation endproducts on osteoblastic cells via calcium channel activation // Eur J Pharmacol, 2013; 706(1-3): 41-4710.1016/j.ejphar.2013.02.04223499695Search in Google Scholar

15. Fromigué O, Haÿ E, Barbara A et al. Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate // J Biol Chem, 2010; 285(33): 25251-25258Search in Google Scholar

16. Fromigué O, Haÿ E, Barbara A et al. Calcium sensing receptor-dependent and receptor-independent activation of osteoblast replication and survival by strontium ranelate // J Cell Mol Med, 2009; 13(8B): 2189-219910.1111/j.1582-4934.2008.00673.xSearch in Google Scholar

17. Gu Z, Zhang X, Li L et al. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts // Mater Sci Eng C Mater Biol Appl, 2013; 33(1): 274-281Search in Google Scholar

18. Gu Z, Xie H, Li L et al. Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering // J Mater Sci Mater Med, 2013; 24(5): 1251-1260Search in Google Scholar

19. Guan RG, Cipriano AF, Zhao ZY et al. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation // Mater Sci Eng C Mater Biol Appl, 2013; 33(7): 3661-3669Search in Google Scholar

20. Hao J, Acharya A, Chen K, et al. Novel bioresorbable strontium hydroxyapatite membrane for guided bone regeneration // Clin Oral Implants Res, 2015; 26(1): 1-7Search in Google Scholar

21. Iolascon G, Frizzi L, Di Pietro G et al. Bone quality and bone strength: benefits of the bone-forming approach // Clin Cases Miner Bone Metab. 2014;11(1): 20–24Search in Google Scholar

22. Isaac J, Nohra J, Lao J et al. Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells // Eur Cell Mater, 2011; 21: 130-143Search in Google Scholar

23. Kuang GM, Yau WP, Lu WW et al. Local application of strontium in a calcium phosphate cement system accelerates healing of soft tissue tendon grafts in anterior cruciate ligament reconstruction: experiment using a rabbit model // Am J Sports Med, 2014; 42(12): 2996-3002Search in Google Scholar

24. Li Y, Li J, Zhu S et al. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells // Biochem Biophys Res Commun, 2012; 418(4): 725-730Search in Google Scholar

25. Lin K, Xia L, Li H et al. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics // Biomaterials, 2013; 34(38): 10028-10042Search in Google Scholar

26. Liu C, Zhang Y, Wang L et al. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro // PLoS One, 2015; 10(11): e014066910.1371/journal.pone.0140669463151826529234Search in Google Scholar

27. Marie PJ. Strontium ranelate: a novel mode of action optimizing bone formation // Osteoporosis Int, 2005; 16: 7-10Search in Google Scholar

28. Meunier PJ, Roux C, Seeman E et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis // N Engl J Med. 2004; 350(5):459-68Search in Google Scholar

29. Neves N, Campos BB, Almeida IF et al. Strontium-rich injectable hybrid system for bone regeneration // Mater Sci Eng C Mater Biol Appl, 2016; 59: 818-827Search in Google Scholar

30. Ni GX, Lu WW, Chiu KY et al. Strontium-containing hydroxyapatite (Sr-HA) bioactive cement for primary hip replacement: an in vivo study// J Biomed Mater Res B Appl Biomater, 2006;77(2): 409-415Search in Google Scholar

31. Nielsen SP. Review – the biological role of strontium // Bone, 2004; 35(3):583–588Search in Google Scholar

32. Panzavolta S, Torricelli P, Sturba L et al. Setting properties and in vitro bioactivity of strontium-enriched gelatin-calcium phosphate bone cements // J Biomed Mater Res A, 2008; 84(4): 965-972Search in Google Scholar

33. Park JW, Kang DG, Hanawa T. New bone formation induced by surface strontium-modified ceramic bone graft substitute // Oral Diseases, 2016; 22(1): 53-61Search in Google Scholar

34. Pelletier JP, Kapoor M, Fahmi H et al. Strontium ranelate reduces the progression of experimental dog osteoarthritis by inhibiting the expression of key proteases in cartilage and of IL-1β in the synovium // Ann Rheum Dis, 2013; 72(2): 250-257Search in Google Scholar

35. Pelletier JP, Roubille C, Raynauld JP et al. Disease-modifying effect of strontium ranelate in a subset of patients from the Phase III knee osteoarthritis study SEKOIA using quantitative MRI: reduction in bone marrow lesions protects against cartilage loss // Ann Rheum Dis, 2015; 74(2): 422-429Search in Google Scholar

36. Peng S, Zhou G, Luk KD et al. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway // Cell Physiol Biochem, 2009; 23(1-3): 165-17410.1159/00020410519255511Search in Google Scholar

37. Peng S, Liu XS, Huang S et al. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin // Bone. 2011; 49(6):1290-8Search in Google Scholar

38. Qiu K, Zhao XJ, Wan CX et al. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds // Biomaterials, 2006, 27(8): 1277-128610.1016/j.biomaterials.2005.08.00616143392Search in Google Scholar

39. Querido W, Farina M, Anselme K. Strontium ranelate improves the interaction of osteoblastic cells with titanium substrates: Increase in cell proliferation, differentiation and matrix mineralization // Biomatter, 2015; 5: e102784710.1080/21592535.2015.1027847504470426176488Search in Google Scholar

40. Ray S, Thormann U, Sommer U et al. Effects of macroporous, strontium loaded xerogel-scaffolds on new bone formation in critical-size metaphyseal fracture defects in ovariectomized rats // Injury, 2016; 47(1): 52-61Search in Google Scholar

41. Reginster JY, Badurski J, Bellamy N et al. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind, randomised placebo-controlled trial // Ann Rheum Dis. 2013; 72(2):179-86Search in Google Scholar

42. Reginster JY, Brandi ML, Cannata-Andía J et al. The position of strontium ranelate in today’s management of osteoporosis //Osteoporos Int. 2015; 26 (6):1667–1671Search in Google Scholar

43. Reginster JY, Deroisy R, Jupsin I. Strontium ranelate: a new paradigm in the treatment of osteoporosis // Drugs Today (Barc). 2003; 39(2):89-101Search in Google Scholar

44. Römer P, Desaga B, Proff P et al. Strontium promotes cell proliferation and suppresses IL-6 expression in human PDL cells // Ann Anat, 2012; 194(2): 208-211Search in Google Scholar

45. Rivadeneira F, Mäkitie O. Osteoporosis and Bone Mass Disorders: From Gene Pathways to Treatments // Trends Endocrinol. Metab. 2016 ( (2016) 262–281.Search in Google Scholar

46. Rucci N. Molecular biology of bone remodeling // Clin. Cases Miner. Bone Metab. 2008; (5): 49-56Search in Google Scholar

47. Rybchyn MS, Slater M, Conigrave AD et al. An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts // J Biol Chem, 2011; 286(27): 23771-23779Search in Google Scholar

48. Saidak Z, Haÿ E, Marty C et al. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling // Aging Cell, 2012; 11(3): 467-474Search in Google Scholar

49. Saidak Z, Marie PJ. Strontium signaling: Molecular mechanisms and therapeutic implications in osteoporosis // Pharmacology & Therapeutics, 2012; (136): 216–22610.1016/j.pharmthera.2012.07.00922820094Search in Google Scholar

50. Singh S, Kumar D, Lal AK. Serum Osteocalcin as a Diagnostic Biomarker for Primary Osteoporosis in Women // J Clin Diagn Res, 2015; 9(8): 4–7Search in Google Scholar

51. Singh SS, Roy A, Lee BE. A study of strontium doped calcium phosphate coatings on AZ31 // Mater Sci Eng C Mater Biol Appl, 2014; 40: 357-365Search in Google Scholar

52. Tie D, Guan R, Liu H. An in vivo study on the metabolism and osteogenic activity of bioabsorbable Mg-1Sr alloy // Acta Biomater, 2016; 29: 455-467.Search in Google Scholar

53. Thormann U, Ray S, Sommer U et al. Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats // Biomaterials, 2013; 34(34): 8589-8598Search in Google Scholar

54. Verberckmoes SC, Debroe ME. Dose dependent effect of strontium on osteoblast function and mineralization // Kidney Int, 2003; 64:534-543Search in Google Scholar

55. Yang F, Yang D, Tu J et al. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling // Stem Cells, 2011; 29(6): 981-991Search in Google Scholar

eISSN:
1407-981X
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Medicine, Clinical Medicine, Surgery, other