Open Access

Innovative educational course II: Modelling of odour dispersion from agricultural biogas plants

   | Jan 27, 2018

Cite

[1] Loskot J, Smolík M, Hyšplerová L, Radocha K, Kříž J, Eminger S, et al. Innovative educational program for biogas production carried out at University of Hradec Králové (CZ) and at University of Opole (PL). Chem Didact Ecol Metrol. 2016;21(1-2):57-70. DOI: 10.1515/cdem-2016-0005.10.1515/cdem-2016-0005Open DOISearch in Google Scholar

[2] Lapčík V, Lapčíková M. Biogas Stations and their Environmental Impacts. Rudarsko-geološko-naftni zbornik. Zagreb, Hrvatska. 2011;23:9-14. http://hrcak.srce.hr/file/111499.Search in Google Scholar

[3] Gebicki J, Byliński H, Namieśnik J. Measurement techniques for assessing the olfactory impact of municipal sewage treatment plants. Environ Monit Assess. 2016;188:32-46. DOI: 10.1007/s10661-015-5024-2.10.1007/s10661-015-5024-2467981226670041Open DOISearch in Google Scholar

[4] Wilson AD, Baietto M. Applications and advances in electronic-nose technologies. Sensors. 2009;9(7):5099-5148. DOI: 10.3390/s90705099.10.3390/s90705099327416322346690Open DOISearch in Google Scholar

[5] Model SYMOS’97 v. 2013. Application manual. Idea-Envi s.r.o. https://www.idea-envi.cz/.Search in Google Scholar

[6] Keder J. Adaptation of the Czech Regulatory Dispersion Model for odour dispersion calculation, its validation and crtitical evaluation. Chem Eng Trans. 2008;15:17-22. ISBN: 978-88-95608-09-9. http://www.aidic.it/cet/08/15/003.pdf.Search in Google Scholar

[7] Sucker K, Both R, Bischoff M, Guski R, Winneke G. Odor frequency and odor annoyance. Part I: assessment of frequency, intensity and hedonic tone of environmental odors in the field. Int Arch Occup Environ Health. 2008;81(6):671-682. DOI 10.1007/s00420-007-0259-z.10.1007/s00420-007-0259-z17932684Open DOISearch in Google Scholar

[8] Straka F, Lacek P. Emise pachovych latek z bioplynovych stanic: Studie chemicke povahy pachu z BPS, jejich zdroju a moznosti minimalizace pachovych emisi (Emissions of odorous substances from biogas stations: Study of the chemical nature of odors, their sources and the possibility of minimizing odor emissions). Praha: Ústav pro výzkum a využití paliv a.s; 2008. http://media0.7x.cz/files/media0:50fe48923eee2.pdf.upl/OOO-STUDIE_emise_pachovych_latek_z_BPstanic-20090114.pdf.Search in Google Scholar

[9] Kalinichenko A, Havrysh V, Perebyynis V. Evaluation of biogas production and usage potential. Ecol Chem Eng S. 2016;23(3):387-400. DOI: 10.1515/eces-2016-0027.10.1515/eces-2016-0027Open DOISearch in Google Scholar

[10] Bubnik J, Keder J, Macoun J, Maňák J. SYMOS’97. System for Modelling of stationary sources - methodological guide. Prague: Czech Hydrometeorological Institute; 1998 (updated 2014). http://fzp.czu.cz/~vachm/fluid/symos_A4.pdf.Search in Google Scholar

[11] Kříž J, Loskot J, Štěpánek V, Hyšplerová L, Jezbera D, Trnková L, et al. Modelling of mercury emissions from large solid fuel combustion and biomonitoring in CZ-PL border region. Ecol Chem Eng S. 2016;23(4):593-604. DOI: 10.1515/eces-2016-0042.10.1515/eces-2016-0042Open DOISearch in Google Scholar

[12] Kříž J, Hyšplerová L, Smolík M, Eminger S, Vargová A, Keder J, et al. Modelling of emissions from large biogas plants. Chem Didact Ecol Metrol. 2015;20(1-2):49-58. DOI: 10.1515/cdem-2015-0005.10.1515/cdem-2015-0005Open DOISearch in Google Scholar

[13] Avaliani SL, Balter BM, Balter DB, Faminskaya MV, Revich BA, Stalnaya MV. Air pollution source identification from odor complaint data. Air Qual Atmos Health. 2016;9(2):179-192. DOI: 10.1007/s11869-015-0317-8.10.1007/s11869-015-0317-8Open DOISearch in Google Scholar

[14] Pellegrino R, Sinding C, Wijk RA, Hummel T. Habituation and adaptation to odors in humans. Physiol Behavior. 2017;177:13-19. DOI: 10.1016/j.physbeh.2017.04.006.10.1016/j.physbeh.2017.04.00628408237Open DOISearch in Google Scholar

[15] Brattoli M, Gennaro G, Pinto V, Loiotile AD, Lovascio S, Penza M. Odour detection methods: olfactometry and chemical sensors. Sensors. 2011;11(5):5290-5322. DOI: 10.3390/s110505290.10.3390/s110505290323135922163901Open DOISearch in Google Scholar

[16] Capelli L, Sironi S, Rosso R, Céntola P, Bonati S. Improvement of olfactometric measurement accuracy and repeatability by optimization of panel selection procedures. Water Sci Technol. 2010;61(5):1267-78. DOI: 10.2166/wst.2010.023.10.2166/wst.2010.02320220249Open DOISearch in Google Scholar

[17] Guillot JM, Bilsen I, Both R, Hangartner M, Kost WJ, Kunz W, et al. The future European standard to determine odour in ambient air by using field inspection. Water Sci Technol. 2012;66(8):1691-1698. DOI: 10.2166/wst.2012.375.10.2166/wst.2012.37522907453Search in Google Scholar

[18] Dentoni L, Capelli L, Sironi S, Guillot JM, Rossi AN. Comparison of different approaches for odour impact assessment: dispersion modelling (CALPUFF) vs field inspection (CEN/TC 264). Water Sci Technol. 2013;68(8):1731-1738. DOI: 10.2166/wst.2013.387.10.2166/wst.2013.38724185053Search in Google Scholar

[19] Nicell JA. Assessment and regulation of odour impacts. Atmos Environ. 2009;43(1):196-206. DOI: 10.1016/j.atmosenv.2008.09.033.10.1016/j.atmosenv.2008.09.033Open DOISearch in Google Scholar

[20] Strojové vnímání vůní a zápachů. (Machine perception of odors). Automa. 2000/1. http://automa.cz/cz/casopis-clanky/strojove-vnimani-vuni-a-zapachu-2000_01_27557_1224/.Search in Google Scholar

[21] Kudarihal CS, Gupta M. Electronic nose based on metal oxide semiconductor sensors as an alternative technique for perception of odours. IJAET. 2014;7(1):206-216. http://www.e-ijaet.org/media/25N19-IJAET0319400_v7_iss1_206-216.pdf.Search in Google Scholar

[22] Macías M, Agudo JE, Manso AG, Orellana CJG, Velasco HMG, Caballero RG. A compact and low cost electronic nose for aroma detection. Sensors. 2013;13(5):5528-5541. DOI: 10.3390/s130505528.10.3390/s130505528369001323698265Open DOISearch in Google Scholar

[23] Bhandare PB, Pendbhaje NS, Narang A. Electronic nose: A review. RRJET. 2013;2(4):1-8. https://www.rroij.com/open-access/electronic-nose-a-review-1-8.pdf.Search in Google Scholar

[24] Keller PE, Kangas LJ, Liden LH, Hashem S, Kouzes R. Electronic noses and their applications. Proc. IEEE Technical Applications Conf Workshops Northcon. 1995. DOI: 10.1109/NORTHC.1995.485024.10.1109/NORTHC.1995.485024Open DOISearch in Google Scholar

[25] Ramgir NS. Electronic nose based on nanomaterials: Issues, challenges, and prospects. ISRN Nanomaterials. 2013, Article ID 941581, 21 pages. DOI: 10.1155/2013/941581.10.1155/2013/941581Search in Google Scholar

[26] Dentoni L, Capelli L, Sironi S, Rosso R, Zanetti S, Torre MD. Development of an electronic nose for environmental odour monitoring. Sensors. 2012;12:14363-14381. DOI: 10.3390/s121114363.10.3390/s121114363352291823202165Open DOISearch in Google Scholar

[27] Freeman T, Needham C, Schulz T. Analysis of Options for Odour Evaluation for Industrial or Trade Processes. CH2M BECA LTD, 2000.Search in Google Scholar

[28] Nielsen TB, Holmegaard HT. From University Student to Employee. Int J Innovation Sci Mathematics Educat. 2016;24(3):14-30. https://www.researchgate.net/publication/308889074.Search in Google Scholar

eISSN:
2084-4506
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other