Cite

[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37-38. DOI: 10.1038/238037a0.10.1038/238037a0Search in Google Scholar

[2] Caballero L, Whitehead K A, Allen NS, Verran J. Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. J Photochem Photobiol Chem. 2009;202:92-98. DOI: 10.1016/j.jphotochem.2008.11.005.10.1016/j.jphotochem.2008.11.005Search in Google Scholar

[3] Göransson G, Jirkovský JS, Krtil P, Ahlberg E. Oxidation of propenol on nanostructured Ni and NiZn electrodes in alkaline solution. Electrochimica Acta. 2014;139:345-355. DOI: 10.1016/j.electacta.2014.06.169.10.1016/j.electacta.2014.06.169Search in Google Scholar

[4] Venkata Subba Rao K, Rachel A, Subrahmanyam M, Boule P. Immobilization of TiO2 on pumice stone for the photocatalytic degradation of dyes and dye industry pollutants. Appl Catal B Environ. 2003;46:77-85. DOI: 10.1016/S0926-3373(03)00199-1.10.1016/S0926-3373(03)00199-1Search in Google Scholar

[5] Rasalingam S, Peng R, Koodali RT. Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2 mixed oxide materials. J Nanomater. 2014;e617405. DOI: 10.1155/2014/617405.10.1155/2014/617405Search in Google Scholar

[6] Zhang L, Mohamed HH, Dillert R, Bahnemann D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J Photochem Photobiol C Photochem Rev. 2012;13:263-276. DOI: 10.1016/j.jphotochemrev.2012.07.002.10.1016/j.jphotochemrev.2012.07.002Search in Google Scholar

[7] Radecka M, Rekas M, Trenczek-Zajac A, Zakrzewska K. Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J Power Sources. 2008;181:46-55. DOI: 10.1016/j.jpowsour.2007.10.082.10.1016/j.jpowsour.2007.10.082Search in Google Scholar

[8] Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal Today. 2009;147:1-59. DOI: 10.1016/j.cattod.2009.06.018.10.1016/j.cattod.2009.06.018Search in Google Scholar

[9] Mohamed HH, Bahnemann DW. The role of electron transfer in photocatalysis: Fact and fictions. Appl Catal B Environ. 2012;128:91-104. DOI: 10.1016/j.apcatb.2012.05.045.10.1016/j.apcatb.2012.05.045Search in Google Scholar

[10] Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63:515-582. DOI: 10.1016/j.surfrep.2008.10.001.10.1016/j.surfrep.2008.10.001Search in Google Scholar

[11] Zielińska-Jurek A, Zaleska A. Ag/Pt-modified TiO2 nanoparticles for toluene photooxidation in the gas phase. Catal Today. 2014;230:104-111. DOI: 10.1016/j.cattod.2013.11.044.10.1016/j.cattod.2013.11.044Search in Google Scholar

[12] Chang S, Liu W. The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts. Appl Catal B Environ. 2014;156-157:466-475. DOI: 10.1016/j.apcatb.2014.03.044.10.1016/j.apcatb.2014.03.044Search in Google Scholar

[13] Sun H, Wang S, Ang HM, Tadé MO, Li Q. Halogen element modified titanium dioxide for visible light photocatalysis. Chem Eng J. 2010;162:437-447. DOI: 10.1016/j.cej.2010.05.069.10.1016/j.cej.2010.05.069Search in Google Scholar

[14] Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331-349. DOI: 10.1016/j.apcatb.2012.05.036.10.1016/j.apcatb.2012.05.036Search in Google Scholar

[15] Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. J Photochem Photobiol C Photochem Rev. 2012;13:169-189. DOI: 10.1016/j.jphotochemrev.2012.06.001.10.1016/j.jphotochemrev.2012.06.001Search in Google Scholar

[16] Chen X, Mao SS. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev. 2007; 2891-2959. DOI: 10.1021/cr0500535.10.1021/cr0500535Search in Google Scholar

[17] Monteiro RAR, Lopez, FVZ, Silva AMT, Angelo J, Silva GV, Mendes AM, et al. Are TiO2-based exterior paints useful catalysts for gas-phase photooxidation processes? A case study on n-decane abatement for air detoxification. Appl Catal B Environ. 2014;147:988-999. DOI: 10.1016/j.apcatb.2013.09.031.10.1016/j.apcatb.2013.09.031Search in Google Scholar

[18] Kolen’ko YV, Churagulov BR, Kunst M, Mazerolles L, Colbeau-Justin C. Photocatalytic properties of titania powders prepared by hydrothermal method. Appl Catal B Environ. 2004;54:51-58. DOI: 10.1016/j.apcatb.2004.06.006.10.1016/j.apcatb.2004.06.006Search in Google Scholar

[19] La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AN, Guzzi MT, et al. Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat. 2012;74:186-191. DOI: 10.1016/j.porgcoat.2011.12.008.10.1016/j.porgcoat.2011.12.008Search in Google Scholar

[20] La Russa MF, Macchia A, Ruffolo SA, De Leo F, Barberio M, Barone P, et al. Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials. Int Biodeterior Biodegrad. 2014;96:87-96. DOI: 10.1016/j.ibiod.2014.10.002.10.1016/j.ibiod.2014.10.002Search in Google Scholar

[21] Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard Ch, Herrmann JM, et al. Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ. 2001;31:145-157. DOI: 10.1016/S0926-3373(00)00276-9.10.1016/S0926-3373(00)00276-9Search in Google Scholar

eISSN:
2084-4506
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Chemistry, other