Open Access

A hierarchy of hydrodynamic models for silicon carbide semiconductors


Cite

1. O. Muscato, W. Wagner, and V. Di Stefano, Numerical study of the systematic error in Monte Carlo schemes for semiconductors, ESAIM: M2AN, vol. 44, no. 5, pp. 1049-1068, 2010.Search in Google Scholar

2. O. Muscato, W. Wagner, and V. Di Stefano, Properties of the steady state distribution of electrons in semiconductors, Kinetic and Related Models, vol. 4, no. 3, pp. 809-829, 2011.10.3934/krm.2011.4.809Search in Google Scholar

3. O. Muscato, V. Di Stefano, and W. Wagner, A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation, Comput. Math. with Appl., vol. 65, no. 3, pp. 520-527, 2013.10.1016/j.camwa.2012.03.100Search in Google Scholar

4. T. Sadi, R. Kelsall, N. Pilgrim, J.-L. Thobel, and F. Dessene, Monte carlo study of self-heating in nanoscale devices, J. Comp. Electr., vol. 11, no. 1, pp. 118-128, 2012.10.1007/s10825-012-0395-xSearch in Google Scholar

5. O. Muscato and W. Wagner, A class of stochastic algorithms for the wigner equation, SIAM J. Sci. Comput., vol. 38, no. 3, pp. A1438- A1507, 2016.10.1137/16M105798XSearch in Google Scholar

6. A. Majorana, G. Mascali, and V. Romano, Charge transport and mobility in monolayer graphene, J. Math. Industry, vol. 7, p. 4, 2017.10.1186/s13362-016-0027-3Search in Google Scholar

7. G. Lebon, D. Jou, and J. Casas-Vázquez, Understanding Non- equilibrium Thermodynamics. Springer-Verlag, 2008.10.1007/978-3-540-74252-4Search in Google Scholar

8. I. Mueller and T. Ruggeri, Rational Extended Thermodynamics. Springer-Verlag, 1998.10.1007/978-1-4612-2210-1Search in Google Scholar

9. O. Muscato and V. D. Stefano, Electrothermal transport in silicon carbide semiconductors via a hydrodynamic model, SIAM J. APPL. MATH., vol. 75, no. 4, pp. 1941-1964, 2015.Search in Google Scholar

10. A. Jüngel, Energy transport in semiconductor devices, Math. Comput. Model. Dyn. Syst., vol. 16, pp. 1-22, 2010.10.1080/13873951003679017Search in Google Scholar

11. G. Pennington and N. Goldsman, Consistent calculation for n-type hexagonal SiC inversion layers, J. Appl. Phys., vol. 95, no. 9, pp. 4223- 4234, 2004.Search in Google Scholar

12. J. Ziman, Electrons and Phonons. Claredon Press, 1967.Search in Google Scholar

13. O. Muscato and V. Di Stefano, Hydrodynamic modeling of the electrothermal transport in silicon semiconductors, J. Phys. A: Math. Theor., vol. 44, no. 10, p. 105501, 2011.Search in Google Scholar

14. O. Muscato and V. Di Stefano, An energy transport model describing heat generation and conduction in silicon semiconductors, J. Stat. Phys., vol. 144, no. 1, pp. 171-197, 2011.10.1007/s10955-011-0247-2Search in Google Scholar

15. O. Muscato and V. Di Stefano, Local equilibrium and off-equilibrium thermoelectric effects in silicon semiconductors, J. Appl. Phys., vol. 110, no. 9, p. 093706, 2011.Search in Google Scholar

16. O. Muscato and V. Di Stefano, Heat generation and transport in nanoscale semiconductor devices via Monte Carlo and hydrodynamic simulations, COMPEL, vol. 30, no. 2, pp. 519-537, 2011.10.1108/03321641111101050Search in Google Scholar

17. V. Di Stefano and O. Muscato, Seebeck effect in silicon semiconductors, Acta Appl. Math., vol. 122, no. 1, pp. 225-238, 2012.10.1007/s10440-012-9739-6Search in Google Scholar

18. O. Muscato and V. Di Stefano, Electro-thermal behaviour of a submicron silicon diode, Semicond. Sci. Tech., vol. 28, no. 2, p. 025021, 2013.Search in Google Scholar

19. G. Mascali, A hydrodynamical model for silicon semiconductors including crystal heating, Europ. J. Appl. Math., vol. 26, pp. 477-496, 2015.10.1017/S0956792515000157Search in Google Scholar

20. G. Mascali, A new formula for silicon thermal conductivity based on a hierarchy of hydrodynamical models, J. Stat. Phys., vol. 163, no. 5, pp. 1268-1284, 2016.Search in Google Scholar

21. O. Muscato and V. Di Stefano, Hydrodynamic modeling of silicon quantum wires, J. Comput. Electron., vol. 11, no. 1, pp. 45-55, 2012.10.1007/s10825-012-0381-3Search in Google Scholar

22. O. Muscato and V. Di Stefano, Hydrodynamic simulation of a n+ - n - n+ silicon nanowire, Contin. Mech. Thermodyn., vol. 26, pp. 197-205, 2014.10.1007/s00161-013-0296-7Search in Google Scholar

23. O. Muscato and T. Castiglione, Electron transport in silicon nanowires having different cross-sections, Comm. Appl. Ind. Math., vol. 7, no. 2, pp. 8-25, 2016.10.1515/caim-2016-0003Search in Google Scholar

24. O. Muscato and T. Castiglione, A hydrodynamic model for silicon nanowires based on the maximum entropy principle, Entropy, vol. 18, no. 10, p. 368, 2016.10.3390/e18100368Search in Google Scholar

25. M. Coco, G. Mascali, and V. Romano, Monte Carlo analysis of the thermal effects in monolayer graphene, J. Comp. Theor. Transp., vol. 45, no. 7, pp. 540-553, 2016.10.1080/23324309.2016.1211537Search in Google Scholar

26. M. Lundstrom, Fundamentals of Carrier Transport. Cambridge University Press, 2000.10.1017/CBO9780511618611Search in Google Scholar

27. M. Roschke and F. Schwierz, Electron mobility models for 4H, 6H, and 3C SiC, IEEE Trans. Elec. Dev., vol. 48, no. 7, pp. 1442-1447, 2001.Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics