Open Access

Effective thermal conductivity of superfluid helium: laminar, turbulent and ballistic regimes

Communications in Applied and Industrial Mathematics's Cover Image
Communications in Applied and Industrial Mathematics
Special Issue on Constitutive Equations for Heat Conduction in Nanosystems and Non-equilibrium Processes. Guest Editors: Vito Antonio Cimmelli and David Jou

Cite

1. V. Arp, Heat transfer to superfluid and supercritical helium, Journal of Applied Physics, vol. 40, p. 2010, 1969.10.1063/1.1657900Search in Google Scholar

2. K. Mendelsohn, Liquid helium, in Encyclopedia of Physics, vol. XV, Berlin: Springer, 1956.10.1007/978-3-642-45838-5_5Search in Google Scholar

3. S. W. Van Sciver, Helium Cryogenics. Berlin: Springer, second ed., 2012.10.1007/978-1-4419-9979-5Search in Google Scholar

4. B. Bertman and T. A. Kitchens, Heat transport in superfluid filled capillaries, Cryogenics, vol. 8, pp. 36–41, 1968.10.1016/S0011-2275(68)80051-7Search in Google Scholar

5. D. Benin and H. J. Maris, Phonon heat transport and Knudsen”s minimum in liquid helium at low temperatures, Physical Review B, vol. 18, pp. 3112–3125, 1978.Search in Google Scholar

6. D. S. Greywall, Thermal-conductivity measurements in liquid 4He below 0.7k, Physical Review B, vol. 23, pp. 2152–2168, 1981.Search in Google Scholar

7. H. J. Maris, Dissipative coefficients of superfluid helium, Physical Review A, vol. 7, pp. 2074–2081, 1973.Search in Google Scholar

8. L. D. Landau, Theory of the superfluidity of helium II, Physical Review, vol. 60, no. 4, p. 356, 1941.10.1103/PhysRev.60.356Search in Google Scholar

9. M. Sciacca, A. Sellitto, and D. Jou, Transition to ballistic regime for heat transport in helium II, Physics Letters A, vol. 378, pp. 2471–2477, 2014.Search in Google Scholar

10. M. Sciacca, D. Jou, and M. S. Mongioví, Effective thermal conductivity of helium ii: from landau to gorter–mellink regimes, Zeitschrift für angewandte Mathematik und Physik, pp. 1–17, 2013.Search in Google Scholar

11. P. Critchlow and R. Hemstreet, Heat transport in superfluid helium in wide tubes, Journal of Applied Physics, vol. 40, p. 2675, 1969.10.1063/1.1658056Search in Google Scholar

12. L. D. Landau and E. M. Lishitz, Mechanics of fluids. Oxford: Pergamon, 1985.Search in Google Scholar

13. R. J. Donnelly, Quantized vortices in helium II. Cambridge, UK: Cambridge University Press, 1991.Search in Google Scholar

14. C. F. Barenghi, R. J. Donnelly, and W. F. Vinen, Quantized Vortex Dynamics and Superfluid Turbulence. Berlin: Springer, 2001.10.1007/3-540-45542-6Search in Google Scholar

15. M. Tsubota, M. Kobayashi, and H. Takeuchi, Quantum hydrodynamics, Physics Report, vol. 522, pp. 191–238, 2013.10.1016/j.physrep.2012.09.007Search in Google Scholar

16. S. K. Nemirovskii, Quantum turbulence: Theoretical and numerical problems, Physics Reports, vol. 524, pp. 85–202, 2013.10.1016/j.physrep.2012.10.005Search in Google Scholar

17. D. R. Ladner and J. T. Tough, Temperature and velocity dependence of superfluid turbulence, Physical Review B, vol. 20, pp. 2690–2702, 1979.Search in Google Scholar

18. A. Sato and et al., Temperature dependence of the Gorter-Mellink exponent measured in a channel containing He II, in ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference-CEC, vol. 823, pp. 387–392, AIP Publishing, 2006.10.1063/1.2202439Search in Google Scholar

19. R. Whitworth, Experiments on the flow of heat in liquid helium below 0.7 degrees K, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 246, no. 1246, pp. 390–405, 1958.Search in Google Scholar

20. S. Putterman, Superfluid hydrodynamics. Amsterdam: North-Holland Publishing Co., 1974.Search in Google Scholar

21. S. Nemirovskii, V. Koren’kov, and V. Krupitskii, Heat flux through a phase interface in superfluid helium, Journal of Engineering Physics, vol. 47, no. 6, pp. 1413–1419, 1984.Search in Google Scholar

22. D. Jou, J. Casas-Vázquez, and G. Lebon, Extended Irreversible Thermodynamics. Berlin: Springer-Verlag, fourth ed., 2010.10.1007/978-90-481-3074-0_2Search in Google Scholar

23. I. Müller and T. Ruggeri, Rational Extended Thermodynamics. New York: Springer-Verlag, 1998.10.1007/978-1-4612-2210-1Search in Google Scholar

24. M. S. Mongioví, Extended irreversible thermodynamics of liquid helium II, Physical Review B, vol. 48, pp. 6276–6283, 1993.Search in Google Scholar

25. D. Jou, J. Casas-Vázquez, and M. Criado-Sancho, Thermodynamics of Fluids Under Flow. Berlin: Springer, second ed., 2011.10.1007/978-94-007-0199-1Search in Google Scholar

26. D. Jou, G. Lebon, and M. S. Mongiovì, Second sound, superfluid turbulence, and intermittent effects in liquid helium II, Physical Review B, vol. 66, p. 224509 (9 pages), 2002.Search in Google Scholar

27. D. Jou and M. Mongiovì, Description and evolution of anisotropy in superfluid vortex tangles with counterflow and rotation, Physical Review B, vol. 74, p. 054509 (11 pages), 2006.Search in Google Scholar

28. H. Bruus, Theoretical microfluidics. Oxford: Oxford University Press, 2007.Search in Google Scholar

29. D. Jou, G. Lebon, and M. Criado-Sancho, Variational principles for thermal transport in nanosystems with heat slip flow, Physical Review E, vol. 82, no. 3, p. 031128, 2010.Search in Google Scholar

30. G. Lebon and P. Dauby, Heat transport in dielectric crystals at low temperature: A variational formulation based on extended irreversible thermodynamics, Physical Review A, vol. 42, p. 4710, 1990.10.1103/PhysRevA.42.4710Search in Google Scholar

31. D. Jou and M. Sciacca, Quantum Reynolds number for superfluid counterflow turbulence, in Bollettino di Matematica Pura e Applicata (M. S. Mongioví, M. Sciacca, and S. Triolo, eds.), vol. VI, pp. 95–103, Aracne editrice, 2013.Search in Google Scholar

32. J. Tough, Superfluid turbulence, in Progress of Low Temperature Physics (D. Brewer, ed.), vol. VIII, pp. 133–219, North Holland, 1982.10.1016/S0079-6417(08)60006-2Search in Google Scholar

33. M. S. Mongiovì and D. Jou, Generalization of Vinen’s equation including transition to superfluid turbulence, Journal of Physics: Condensed Matter, vol. 17, pp. 4423–4440, 2005.Search in Google Scholar

34. K. P. Martin and J. T. Tough, Evolution of superfluid turbulence in thermal counterflow, Physical Review B, vol. 27, pp. 2788–2799, 1983.Search in Google Scholar

35. E. Yarmchuk and W. I. Glaberson, Thermorotation Effects in Superfluid Helium, Physical Review Letters, vol. 41, no. 8, pp. 564–568, 1978.10.1103/PhysRevLett.41.564Search in Google Scholar

36. L. Galantucci, C.F. Barenghi, M. Sciacca, M. Quadrio, and P. Luchini, Turbulent Superfluid Profiles in a Counterflow Channel, Journal of Low Temperature Physics, vol. 162, pp. 354–360, 2011.10.1007/s10909-010-0266-4Search in Google Scholar

37. L. Galantucci and M. Sciacca, Non-classical velocity statistics in counterflow quantum turbulence, Acta Applicandae Mathematicae, vol. 132, no. 1, pp. 273–281, 2014.10.1007/s10440-014-9902-3Search in Google Scholar

38. L. D. Landau, Theory of the Superfluidity of Helium II, Journal of Physics, vol. 5, pp. 71–90, 1941.Search in Google Scholar

39. L. Tisza, Transport phenomena in Helium II, Nature, vol. 141, p. 913, 1938.10.1038/141913a0Search in Google Scholar

40. I. K. I.L. Bekarevich, Phenomenological derivation of the equation of vortex motion in he ii, Soviet Physics JETP, vol. 13, pp. 643–646, 1961.Search in Google Scholar

41. H. Hall and W. Vinen, The rotation of liquid helium ii. ii. the theory of mutual friction in uniformly rotating helium II, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 238, no. 1213, pp. 215–234, 1956.Search in Google Scholar

eISSN:
2038-0909
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics