Open Access

Detailed hydrogeomorphic analysis in the Gerecse Mountains, Hungary

   | Feb 08, 2017

Cite

[1] Bulla, B. (1941), A magyar medence pliocén és pleisztocén teraszai (Pliocene and Pleistocene terraces of the Hungarian Basin). Földrajzi Közlemények 69(4), 199-230.Search in Google Scholar

[2] Pécsi, M. (1959), A magyarországi Duna-völgy kialakulása és felszínalaktana (Development and geomorphology of the Hungarian Danube Valley), vol 3. Földrajzi Kiadó, Budapest, Hungary.Search in Google Scholar

[3] Gábris, Gy. Nádor, A. (2007), Long-term fluvial archives in Hungary: response of the Danube and Tisza rivers to tectonic movements and climatic changes during the Quaternary: a review and new synthesis. Quaternary Science Reviews 26, 2758-2782.10.1016/j.quascirev.2007.06.030Search in Google Scholar

[4] Bugya, T. (2009), Identification of Quaternary fluvial terraces using borehole data and digital elevation models. Zeitschrift für Geomorphologie, Supplementbände 53(2), 113-121.10.1127/0372-8854/2009/0053S3-0113Search in Google Scholar

[5] Szeberényi, J., Viczián, I., Fábián, Sz. Á., Józsa, S. (2013), The relation of the South-Eastern Börzsön Hills to the Visegrad Gorge, Hungary. Studia Geomorphologica Carpatho-Balcanica 47(1), 81-93.10.2478/sgcb-2013-0006Search in Google Scholar

[6] Seijmonsbergen, A. C., Hengl, T., Anders, N. S. (2011), Semi-automated identification and extraction of geomorphological features using digital elevation data. In: Smith, M. J., Paron, P., Griffiths, J. (eds), Geomorphological mapping: a professional handbook of techniques and applications, 24. Developments in Earth Surface Processes, Elsevier, Amsterdam, Netherlands, 298-330.10.1016/B978-0-444-53446-0.00010-0Search in Google Scholar

[7] Grohmann, C. H., Riccomini, C., Alves, F. M. (2007), SRTM-based morphotectonic analysis of the Pocos de Caldas Alkaline Massif, south-eastern Brazil. Computers & Geosciences 33, 10-19.10.1016/j.cageo.2006.05.002Search in Google Scholar

[8] Ruszkiczay-Rüdiger, Zs., Fodor, L., Horváth, E., Telbisz, T. (2009), Discrimination of fluvial, eolian and neotectonic features in a low hilly landscape: A DEM-based morphotectonic analysis in the Central Pannonian Basin, Hungary. Geomorphology 104, 203-217.10.1016/j.geomorph.2008.08.014Search in Google Scholar

[9] Jasiewicz, J., Metz, M. (2011), A new GRAS GIS toolkit for Hortonian analysis of drainage networks. Computers & Geosciences 37, 1162-1173.10.1016/j.cageo.2011.03.003Search in Google Scholar

[10] Demoulin, A., Bovy, B., Rixhon, G., Cornet, Y. (2007), An automated method to extract fluvial terraces from digital elevation models: The Vesdre Valley, a case study in eastern Belgium. Geomorphology 91(1-2), 51-64.10.1016/j.geomorph.2007.01.020Search in Google Scholar

[11] Kéz, A. (1934), A Duna győr-budapesti szakaszának kialakulásáról (On the development of the Danube Valley between Győr and Budapest). Földrajzi Közlemények 62(10-12), 175-193.Search in Google Scholar

[12] Scheuer, Gy., Schweitzer, F. (1988), A Gerecse- és a Budai-hegység édesvízi mészkőösszletei (The travertines of Gerecse and Buda Mountains). Akadémiai Kiadó, Budapest, Hungary.Search in Google Scholar

[13] Ádám, L., Schweitzer, F. (1985), A Neszmély-Dunaalmás-Dunaszentmiklós közötti felszínmozgásos terület 1:10.000-es méretarányú geomorfológiai térképének magyarázója (Explanatory study for the 1:10,000-scale geomorphological map of the Neszmély-Dunaalmás- Dunaszentmiklós mass movement region). In: Ádám, L., Pécsi, M. (eds), Mérnökgeomorfológiai térképezés (Engineering geomorphological mapping). Hungarian Academy of Sciences, Geographical Research Institute, Budapest, Hungary, 108-167.Search in Google Scholar

[14] Dövényi, Z. (ed.) (2010), Magyarország kistájainak katasztere (Inventory of microregions in Hungary). Magyar Tudományos Akadémia, Csillagászati és Földtudományi Kutatóintézet, Budapest, Hungary.Search in Google Scholar

[15] Schweitzer, F. (1980), Gerecse-hegység (Gerecse Mountains). In: Ádám, L., Marosi, S., Szilárd, J. (eds), A Dunántúli-középhegység - Regionális tájföldrajz (The Transdanubian Range - Regional geography). Akadémiai Kiadó, Budapest, Hungary, 369-380.Search in Google Scholar

[16] Pécsi, M. (1991), Geomorfológia és domborzatminősítés (Geomorphology and terrain analysis). Magyar Tudományos Akadémia, Földrajzi Kutatóintézet, Budapest, 121-139.Search in Google Scholar

[17] Józsa, E., Fábián, Sz. Á., Varga, G., Varga, T. (2014), Meredek lejtőkkel elválasztott sík felszínek domborzatmodellezésének sajátosságai dunai magaspartok példáján (The possibilities for digital elevation modelling of plains connected with steep slopes on the example of the high bluffs of the Danube). Modern Geográfia 9(2), 1-20.Search in Google Scholar

[18] Pike, R. J., Wilson, S. E. (1971), Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin 82(4), 1079-1084.10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2Search in Google Scholar

[19] Demoulin, A. (1998), Testing the tectonic significance of some parameters of longitudinal river profiles: the case of the Ardenne (Belgium, NW Europe). Geomorphology 24(1-2), 189-208.10.1016/S0169-555X(98)00016-6Search in Google Scholar

[20] Di Leo, M. (2010), Working report: extraction of morphometric parameters from a digital elevation model - Panama. North Carolina State University.Search in Google Scholar

[21] Horton, R. E. (1932), Drainage-basin characteristics. Eos Trans AGU 13(1), 350-361.10.1029/TR013i001p00350Search in Google Scholar

[22] Jasiewicz, J., Stepinski, T. (2013), Geomorphons - a pattern recognition approach to classification and mapping of landforms. Geomorphology 182, 147-156.10.1016/j.geomorph.2012.11.005Search in Google Scholar

eISSN:
2068-2964
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Chemistry, Environmental Chemistry, Life Sciences, Plant Science, Ecology, other