1. bookVolume 18 (2018): Issue 2 (May 2018)
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
access type Open Access

Urea Metabolism and Regulation by Rumen Bacterial Urease in Ruminants – A Review

Published Online: 11 May 2018
Volume & Issue: Volume 18 (2018) - Issue 2 (May 2018)
Page range: 303 - 318
Received: 27 Apr 2017
Accepted: 06 Sep 2017
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

Urea is used as non-protein nitrogen in the rations of ruminants as an economical replacement for feed proteins. Urea transferred from the blood to the rumen is also an important source of nitrogen for rumen microbial growth. It is rapidly hydrolyzed by rumen bacterial urease to ammonia (NH3) and the NH3 is utilized for the synthesis of microbial proteins required to satisfy the protein requirements of ruminants. Urea has commonly become an accepted ingredient in the diets of ruminants. In recent decades, urea utilization in ruminants has been investigated by using traditional research methods. Recently, molecular biotechnologies have also been applied to analyze urea-degrading bacteria or urea nitrogen metabolism in ruminants. Combining traditional and molecular approaches, we can retrieve better information and understanding related to the mechanisms of urea metabolism in ruminants. This review focuses on urea utilization in ruminants and its regulation by rumen bacterial urease in the host. The accumulated research provides foundations for proposing further new strategies to improve the efficiency of urea utilization in ruminants.


Abdoun K., Stumpff F., Martens H. (2006). Ammonia and urea transport across the rumen epithelium:areview. Anim. Health Res. Rev., 7: 43-59.Search in Google Scholar

Abdoun K., Stumpff F., Rabbani I., Martens H. (2010). Modulation of urea transport across sheep rumen epithelium in vitro by SCFAand CO2. Am. J. Physiol.-Gastr. L., 298: G190-G202.Search in Google Scholar

Armbruster C.E., Smith S.N., Yep A., Mobley H.L. (2014). Increased incidence of urolithiasis and bacteremia during Proteus mirabilis and Providencia stuartii coinfection due to synergistic induction of urease activity. J. Infect Dis., 209: 1524-1532.Search in Google Scholar

Balcells J., Guada J., Castrillo C., Gasa J. (1993). Rumen digestion and urinary excretion of purine derivatives in response to urea supplementation of sodium-treated straw fed to sheep. Brit. J. Nutr., 69: 721-732.Search in Google Scholar

Baldwin R.L.T., Wu S., Li W., Li C., Bequette B.J., Li R.W. (2012). Quantification of transcriptome responses of the rumen epithelium to butyrate infusion using RNA-seq technology. Gene Regul. Syst. Bio., 6: 67-80.Search in Google Scholar

Bankir L., Chen K., Yang B. (2004). Lack of UT-Bin vasa recta and red blood cells prevents urea-induced improvement of urinary concentrating ability. Am. J. Physiol-Renal, 286: F144-F151.Search in Google Scholar

Batista E.D., Detmann E., Valadares Filho S.C., Titgemeyer E.C., Valadares R.F. (2017). The effect of CPconcentration in the diet on urea kinetics and microbial usage of recycled urea in cattle:ameta-analysis. Animal, 11: 1303-1311.Search in Google Scholar

Belzer C., Stoof J., Beckwith C.S., Kuipers E.J., Kusters J.G.,van Vliet A.H. (2005). Differential regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori. Microbiology, 151: 3989-3995.Search in Google Scholar

Benini S., Rypniewski W.R., Wilson K.S., Miletti S., Ciurli S., Mangani S. (2000). The complex of Bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55 Å resolution. J. Biol. Inorg. Chem., 5: 110-118.Search in Google Scholar

Biagi F., Musiani F., Ciurli S. (2013). Structure of the Ure D-Ure F-Ure G-Ure Ecomplex in Helicobacter pylori:amodel study. J. Biol. Inorg. Chem., 18: 571-577.Search in Google Scholar

Boer J.L., Hausinger R.P. (2012). Klebsiella aerogenes Ure F: identification of the Ure Gbinding site and role in enhancing the fidelity of urease activation. Biochemistry, 51: 2298-2308.Search in Google Scholar

Brent B., Adepoju A., Portela F. (1971). Inhibition of rumen urease with acetohydroxamic Acid. J. Anim. Sci., 32: 794-798.Search in Google Scholar

Burbank M.B., Weaver T.J., Williams B.C., Crawford R.L. (2012). Urease activity of ureolytic bacteria isolated from six soils in which calcite was precipitated by indigenous bacteria. Geomicrobiol. J., 29: 389-395.Search in Google Scholar

Chaucheyras- Durand F., Ossa F. (2014). Review: The rumen microbiome: Composition, abundance, diversity, and new investigative tools. Prof. Anim. Sci., 30: 1-12.Search in Google Scholar

Collier J.L., Baker K.M., Bell S.L. (2009). Diversity of urea-degrading microorganisms in openocean and estuarine planktonic communities. Environ. Microbiol., 11: 3118-3131.Search in Google Scholar

Cook A. (1976). Urease activity in the rumen of sheep and the isolation of ureolytic bacteria. J. Gen. Microbiol., 92: 32-48.Search in Google Scholar

Cook A.R., Riley P.W., Murdoch H., Evans P.N., Mc Donald I.R. (2007). Howardella ureilytica gen. nov., sp. nov.,a Gram-positive, coccoid-shaped bacterium fromasheep rumen. Int. J. Syst. Evol. Microbiol., 57: 2940-2945.Search in Google Scholar

Coyle J., Mc Daid S., Walpole C., Stewart G.S. (2016). UT-Burea transporter localization in the bovine gastrointestinal tract. J. Membr. Biol., 249: 77-85.Search in Google Scholar

Dionissopoulos L., Al Zahal O., Steele M.A., Matthews J.C., Mc Bride B.W. (2014). Transcriptomic changes in ruminal tissue induced by the periparturient transition in dairy cows. Am. J. Anim. Vet. Sci., 9: 36.Search in Google Scholar

Dyhrman S.T., Anderson D.M. (2003). Urease activity in cultures and field populations of the toxic dinoflagellate Alexandrium. Limnol. Oceanogr., 48: 647-655.Search in Google Scholar

Erb R., Brown C., Callahan C., Moeller N., Hill D., Cunningham M. (1976). Dietary urea for dairy cattle. II. Effect on functional traits. J. Dairy Sci., 59: 656-667.Search in Google Scholar

Farrugia M.A., Macomber L., Hausinger R.P. (2013). Biosynthesis of the urease metallocenter. J. Biol. Chem., 288: 13178-13185.Search in Google Scholar

Firkins J., Yu Z. (2006). Characterisation and quantification of the microbial populations in the rumen. In: Ruminant physiology, digestion, metabolism and impact of nutrition on gene expression, immunology and stress, K. Sejrsen, T. Hvelplund, M.O. Nielsen (eds). Wageningen Academic Publishers, The Netherlands, pp. 19-54.Search in Google Scholar

Fong Y.H., Wong H.C., Yuen M.H., Lau P.H., Chen Y.W., Wong K.B. (2013). Structure of Ure G/Ure F/Ure Hcomplex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease. PLo S Biol., 11: e1001678.Search in Google Scholar

Giallongo F., Hristov A.N., Oh J., Frederick T., Weeks H., Werner J., Lapierre H., Patton R.A., Gehman A., Parys C. (2015). Effects of slow-release urea and rumen-protected methionine and histidine on performance of dairy cows. J. Dairy Sci., 98: 3292-3308.Search in Google Scholar

Harmeyer J., Martens H. (1980). Aspects of urea metabolism in ruminants with reference to the goat. J. Dairy Sci., 63: 1707-1728.Search in Google Scholar

Holder V.B., Tricarico J.M., Kim D.H., Kristensen N.B., Harmon D.L. (2015). The effects of degradable nitrogen level and slow release urea on nitrogen balance and urea kinetics in Holstein steers. Anim. Feed Sci. Tech., 200: 57-65.Search in Google Scholar

Hu L., Mobley H. (1990). Purification and N-terminal analysis of urease from Helicobacter pylori. Infect. Immun., 58: 992-998.Search in Google Scholar

Huntington G., Archibeque S. (2000). Practical aspects of urea and ammonia metabolism in ruminants. J. Anim. Sci., 77: 1-11.Search in Google Scholar

Imaizumi H., Batistel F.,de Souza J., Santos F.A. (2015). Replacing soybean meal for wet brewer's grains or urea on the performance of lactating dairy cows. Trop. Anim. Health Prod., 47: 877-882.Search in Google Scholar

Jabri E., Carr M.B., Hausinger R.P., Karplus P.A. (1995). The crystal structure of urease from Klebsiella aerogenes. Science, 268: 998.Search in Google Scholar

Jin D., Zhao S., Wang P., Zheng N., Bu D., Beckers Y., Wang J. (2016). Insights into abundant rumen ureolytic bacterial community using rumen simulation system. Front. Microbiol., 7: 1006.Search in Google Scholar

Jin D., Zhao S., Zheng N., Bu D., Beckers Y., Denman S.E., Mc Sweeney C.S., Wang J. (2017). Differences in ureolytic bacterial composition between the rumen digesta and rumen wall based on ure Cgene classification. Front. Microbiol., 8.Search in Google Scholar

Jones G., Milligan J. (1975). Influence on some rumen and blood parameters of feeding acetohydroxamic acid inaurea-containing ration for lambs. Can. J. Anim. Sci., 55: 39-47.Search in Google Scholar

Kakimoto S., Okazaki K., Sakane T., Imai K., Sumino Y., Akiyama S.-I., Nakao Y. (1989). Isolation and taxonomie characterization of acid urease-producing bacteria. Agric. Biol. Chem., 53: 1111-1117.Search in Google Scholar

Kertz A.F. (2010). Review: urea feeding to dairy cattle:ahistorical perspective and review. Prof. Anim. Sci., 26: 257-272.Search in Google Scholar

Kertz A., Davidson L., Cords B., Puch H. (1983). Ruminal infusion of ammonium chloride in lactating cows to determine effect of p Hon ammonia trapping. J. Dairy Sci., 66: 2597-2601.Search in Google Scholar

Kim J.N., Henriksen E.D., Cann I.K., Mackie R.I. (2014). Nitrogen utilization and metabolism in Ruminococcus albus 8. Appl. Environ. Microb., 80: 3095-3102.Search in Google Scholar

Kim M., Morrison M., Yu Z. (2011). Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol. Ecol., 76: 49-63.Search in Google Scholar

Kohn R., Dinneen M., Russek-Cohen E. (2005). Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci., 83: 879-889.Search in Google Scholar

Lapierre H., Lobley G. (2001). Nitrogen recycling in the ruminant: Areview. J. Dairy Sci., 84: E223-E236.Search in Google Scholar

Lauková A., Koniarová I. (1994). Survey of urease activity in ruminal bacteria isolated from domestic and wild ruminants. Microbios, 84: 7-11.Search in Google Scholar

Law R.A., Young F.J., Patterson D.C., Kilpatrick D.J., Wylie A.R., Mayne C.S. (2009). Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation. J. Dairy Sci., 92: 1001-1012.Search in Google Scholar

Ligabue-Braun R., Real-Guerra R., Carlini C.R., Verli H. (2013). Evidence-based docking of the urease activation complex. J. Biomol. Struct. Dyn., 31: 854-861.Search in Google Scholar

Litman T., Søgaard R., Zeuthen T. (2009). Ammonia and urea permeability of mammalian aquaporins. Handb. Exp. Pharmacol., pp. 327-358.10.1007/978-3-540-79885-9_1719096786Search in Google Scholar

Liu Q., Bender R.A. (2007). Complex regulation of urease formation from the two promoters of the ure operon of Klebsiella pneumoniae. J. Bacteriol., 189: 7593-7599.Search in Google Scholar

Liu Y., Hu T., Jiang D., Zhang J., Zhou X. (2008). Regulation of urease gene of Actinomyces naeslundii in biofilms in response to environmental factors. FEMS Microbiol. Lett., 278: 157-163.Search in Google Scholar

Lu Z., Stumpff F., Deiner C., Rosendahl J., Braun H., Abdoun K., Aschenbach J.R., Martens H. (2014). Modulation of sheep ruminal urea transport by ammonia and p H. Am. J. Physiol.-Regul. Integr. Comp. Physiol., 307: R558-R570.Search in Google Scholar

Lu Z., Gui H., Yao L., Yan L., Martens H., Aschenbach J.R., Shen Z. (2015). Short-chain fatty acids and acidic p Hupregulate UT-B, GPR41, and GPR4 in rumen epithelial cells of goats. Am. J. Physiol.-Regul. Integr. Comp. Physiol., 308: R283-R293.Search in Google Scholar

Ludden P., Harmon D., Huntington G., Larson B., Axe D. (2000). Influence of the novel urease inhibitor N-(n-butyl) thiophosphoric triamide on ruminant nitrogen metabolism: II.10.2527/2000.781181x10682820Search in Google Scholar

Ruminal nitrogen metabolism, diet digestibility, and nitrogen balance in lambs. J. Anim. Sci., 78: 188-198.10.2527/2000.781188x10682821Search in Google Scholar

Marini J.C., Fox D.G., Murphy M.R. (2008). Nitrogen transactions along the gastrointestinal tract of cattle: Ameta-analytical approach. J. Anim. Sci., 86: 660-679.Search in Google Scholar

Mehta N., Olson J.W., Maier R.J. (2003). Characterization of Helicobacter pylori nickel metabolism accessory proteins needed for maturation of both urease and hydrogenase. J. Bacteriol., 185: 726-734.Search in Google Scholar

Milton C., Brandt Jr R., Titgemeyer E. (1997). Urea in dry-rolled corn diets: finishing steer performance, nutrient digestion, and microbial protein production. J. Anim. Sci., 75: 1415--1424.Search in Google Scholar

Mobley H., Island M.D., Hausinger R.P. (1995). Molecular biology of microbial ureases. Microbiol. Rev., 59: 451-480.Search in Google Scholar

Mörsdorf G., Kaltwasser H. (1989). Ammonium assimilation in Proteus vulgaris, Bacillus pasteurii, and Sporosarcina ureae. Arch. Microbiol., 152: 125-131.Search in Google Scholar

Naeem A., Drackley J.K., Lanier J.S., Everts R.E., Rodriguez- Zas S.L., Loor J.J. (2014). Ruminal epithelium transcriptome dynamics in response to plane of nutrition and age in young Holstein calves. Funct. Integr. Genomics, 14: 261-273.Search in Google Scholar

On S., Atabay H., Corry J., Harrington C., Vandamme P. (1998). Emended description of Campylobacter sputorum and revision of its infrasubspecific (biovar) divisions, including C. sputorum biovar paraureolyticus,aurease-producing variant from cattle and humans. Int. J. Syst. Bacteriol., 48: 195-206.Search in Google Scholar

Owens F.N., Lusby K.S., Mizwicki K., Forero O. (1980). Slow ammonia release from urea: rumen and metabolism studies. J. Anim. Sci., 50: 527-531.Search in Google Scholar

Patra A.K. (2015). Urea/ammonia metabolism in the rumen and toxicity in ruminants. In: Rumen microbiology: from evolution to revolution, Uniya A.K., Singh R., Kamra D.N. (eds). New Delhi, Heidelberg, New York, Dordrecht, London, Springer, pp. 329-341.10.1007/978-81-322-2401-3_22Search in Google Scholar

Pisulewski P.M., Okorie A.U., Buttery P.J., Haresign W., Lewis D. (1981). Ammonia concentration and protein synthesis in the rumen. J. Sci. Food Agric., 32: 759-766.Search in Google Scholar

Polan C., Miller C., Mc Gilliard M. (1976). Variable dietary protein and urea for intake and production in Holstein cows. J. Dairy Sci., 59: 1910-1914.Search in Google Scholar

Puppel K., Kuczynska B. (2016). Metabolic profiles of cow’s blood;areview. J. Sci. Food Agric., 96: 4321-4328.Search in Google Scholar

Reed K.E. (2001). Restriction enzyme mapping of bacterial urease genes: using degenerate primers to expand experimental outcomes. Biochem. Mol. Biol. Edu., 29: 239-244.Search in Google Scholar

Reynolds C.K., Kristensen N.B. (2008). Nitrogen recycling through the gut and the nitrogen economy of ruminants: an asynchronous symbiosis. J. Anim. Sci., 86: E293-305.Search in Google Scholar

Rojek A., Praetorius J., Frokiaer J., Nielsen S., Fenton R.A. (2008). Acurrent view of the mammalian aquaglyceroporins. Annu. Rev. Physiol., 70: 301-327.Search in Google Scholar

Rojen B.A., Poulsen S.B., Theil P.K., Fenton R.A., Kristensen N.B. (2011). Short communication: Effects of dietary nitrogen concentration on messenger RNAexpression and protein abundance of urea transporter-Band aquaporins in ruminal papillae from lactating Holstein cows. J. Dairy Sci., 94: 2587-2591.Search in Google Scholar

Ryder W., Hillman D., Huber J. (1972). Effect of feeding urea on reproductive efficiency in Michigan Dairy Herd Improvement Association herds. J. Dairy Sci., 55: 1290-1294.Search in Google Scholar

Simmons N., Chaudhry A., Graham C., Scriven E., Thistlethwaite A., Smith C., Stewart G. (2009). Dietary regulation of ruminal bovine UT-Burea transporter expression and localization. J. Anim. Sci., 87: 3288.Search in Google Scholar

Sinclair L.A., Blake C.W., Griffin P., Jones G.H. (2012). The partial replacement of soyabean meal and rapeseed meal with feed grade urea oraslow-release urea and its effect on the performance, metabolism and digestibility in dairy cows. Animal, 6: 920-927.Search in Google Scholar

Singh B.K., Nunan N., Millard P. (2009). Response of fungal, bacterial and ureolytic communities to synthetic sheep urine deposition inagrassland soil. FEMS Microbiol. Ecol., 70: 109-117.Search in Google Scholar

Smith C., Rousselet G. (2001). Facilitative urea transporters. J. Membrane Biol., 183: 1-14.Search in Google Scholar

Stewart G.S., Smith C.P. (2005). Urea nitrogen salvage mechanisms and their relevance to ruminants, non-ruminants and man. Nutr. Res. Rev., 18: 49-62. Search in Google Scholar

Stewart G., Graham C., Cattell S., Smith T., Simmons N., Smith C. (2005). UT-Bis expressed in bovine rumen: potential role in ruminal urea transport. Am. J. Physiol- Reg. I., 289: R605-R612.Search in Google Scholar

Su J., Jin L., Jiang Q., Sun W., Zhang F., Li Z. (2013). Phylogenetically diverse ure Cgenes and their expression suggest the urea utilization by bacterial symbionts in marine sponge Xestospongia testudinaria. Plos One, 8: e64848.Search in Google Scholar

Symonds H., Mather D.L., Collis K. (1981). The maximum capacity of the liver of the adult dairy cow to metabolize ammonia. Brit. J. Nutr., 46: 481-486.Search in Google Scholar

Upadhyay L.S.B. (2012). Urease inhibitors: Areview. Indian J. Biotechnol., 11: 381-388.Search in Google Scholar

Visser H.de , Valk H., Klop A., Van Der Meulen J., Bakker J., Huntington G. (1997). Nutrient fluxes in splanchnic tissue of dairy cows: Influence of grass quality. J. Dairy Sci., 80: 1666-1673.Search in Google Scholar

Voigt J., Krawielitzki R., Piatkowski B. (1980 a). Studies on the effect of phosphoric phenyl ester diamide as inhibitor of rumen urease in dairy cows. 3. Digestibility of the nutrients and bacterial protein synthesis. Arch. Tierernahr., 30: 835-840.10.1080/174503980094250977283730Search in Google Scholar

Voigt J., Piatkowski B., Bock J. (1980 b). Studies on the effect of phosphoric phenyl ester diamide as inhibitor of the rumen urease of dairy cows. 1. Influence on urea hydrolysis, ammonia release and fermentation in the rumen. Arch. Tierernahr., 30: 811-823.10.1080/174503980094250947283728Search in Google Scholar

Walpole M.E., Schurmann B.L., Gorka P., Penner G.B., Loewen M.E., Mutsvan-gwa T. (2015). Serosal-to-mucosal urea flux across the isolated ruminal epithelium is mediated via urea transporter-Band aquaporins when Holstein calves are abruptly changed toamoderately fermentable diet. J. Dairy Sci., 98: 1204-1213.Search in Google Scholar

Wanapat M., Phesatcha K., Kang S. (2016). Rumen adaptation of swamp buffaloes (Bubalus bubalis) by high level of urea supplementation when fed on rice straw-based diet. Trop. Anim. Health Prod., 48: 1135-1140.Search in Google Scholar

Weeks D.L., Sachs G. (2001). Sites of p Hregulation of the urea channel of Helicobacter pylori. Mol. Microbiol., 40: 1249-1259.Search in Google Scholar

Whitelaw F.G., Milne J.S., Wright S.A. (1991). Urease (EC inhibition in the sheep rumen and its effect on urea and nitrogen metabolism. Br. J. Nutr., 66: 209-225.Search in Google Scholar

Wickersham T., Titgemeyer E., Cochran R., Wickersham E., Gnad D. (2008). Effect of rumen-degradable intake protein supplementation on urea kinetics and microbial use of recycled urea in steers consuming low-quality forage. J. Anim. Sci., 86: 3079-3088.Search in Google Scholar

Wilson G., Martz F., Campbell J., Becker B. (1975). Evaluation of factors responsible for reduced voluntary intake of urea diets for ruminants. J. Anim. Sci., 41: 1431-1437.Search in Google Scholar

Witte C.-P., Rosso M.G., Romeis T. (2005). Identification of three urease accessory proteins that are required for urease activation in Arabidopsis. Plant Physiol., 139: 1155-1162.Search in Google Scholar

Wozny M., Bryant M., Holdeman L.T., Moore W. (1977). Urease assay and urease-producing species of anaerobes in the bovine rumen and human feces. Appl. Environ. Microbiol., 33: 1097-1104.Search in Google Scholar

Yuan P., Meng K., Wang Y., Luo H., Huang H., Shi P., Bai Y., Yang P., Yao B. (2012). Abundance and genetic diversity of microbial polygalacturonase and pectate lyase in the sheep rumen ecosystem. Plo S One, 7: e40940.Search in Google Scholar

Zambelli B., Berardi A., Martin-Diaconescu V., Mazzei L., Musiani F., Ma roney M.J., Ciurli S. (2014). Nickel binding properties of Helicobacter pylori Ure F, an accessory protein in the nickel-based activation of urease. J. Biol. Inorg. Chem., 19: 319-334.Search in Google Scholar

Zhang Y.G., Shan A.S., Bao J. (2001). Effect of hydroquinone on ruminal urease in the sheep and its inhibition kinetics in vitro. Asian Australas. J. Anim. Sci., 14: 1216-1220.Search in Google Scholar

Zhao S., Wang J., Zheng N., Bu D., Sun P., Yu Z. (2015). Reducing microbial ureolytic activity in the rumen by immunization against urease therein. BMC Vet. Res., 11: 94.Search in Google Scholar

Zhou J.W., Guo X.S., Degen A.A., Zhang Y., Liu H., Mi J.D., Ding L.M., Wang H.C., Qiu Q., Long R.J. (2015). Urea kinetics and nitrogen balance and requirements for maintenance in Tibetan sheep when fed oat hay. Small Rumin. Res., 129: 60-68.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo