Cite

Andersen O. (2004). Chemical and biological considerations in the treatment of metal intoxications by chelating agents. Mini Rev. Med. Chem., 4: 11–21.Search in Google Scholar

AOAC (2000). The Official Methods of Analysis of AOAC International. Gaithersburg, MD, USA, AOAC Inter., 17th ed., pp. 2200.Search in Google Scholar

Apgar A., Kornegay E.T. (1996). Mineral balance of finishing pigs fed copper sulfate or a copperlysine complex at growth-stimulating levels. J. Anim. Sci., 74: 1594–1600.10.2527/1996.7471594x8818804Open DOISearch in Google Scholar

Armstrong T.A., Cook D.R., Ward M.M., Williams C.M., Spears J.W. (2004). Effect of dietary copper source (cupric citrate and cupric sulphate) and concentration on growth performance and faecal copper excretion in weanling pigs. J. Anim. Sci., 82: 1234–1240.10.2527/2004.8241234x15080347Open DOISearch in Google Scholar

Baker A., Harvey L., Majask-Newman G., Fairweather-Tait S., Flynn A., Cashman K. (1999). Effect of dietary copper intakes on biochemical markers of bone metabolism in healthy adult males. Eur. J. Clin. Nutr., 53: 408–412.Search in Google Scholar

Banks K.M., Thompson K.L., Rush J.K., Applegate T.J. (2004). Effects of copper source on phosphorus retention in broiler chicks and laying hens. Poultry Sci., 83: 990–996.10.1093/ps/83.6.99015206627Open DOISearch in Google Scholar

Baxter J.H., Van Wyk J.J. (1953). A bone disorder associated with copper deficiency. I. Gross morphological, roentgenological, and chemical observations. Bull. Johns Hopkins Hosp., 93: 1–23.Search in Google Scholar

Beattie J.H., Avenell A. (1992). Trace element nutrition and bone metabolism. Nutr. Res. Rev., 5: 167–188.10.1079/NRR1992001319094319Open DOISearch in Google Scholar

Bonjour J.P., Theintz G., Law F., Slosman D., Rizzoli R. (1994). Peak bone mass. Osteoporos. Int., 4 (Suppl. 1): S7–S13.Search in Google Scholar

Camplejohn K.L., Allard S.A. (1988). Limitations of safranin ‘O’ staining in proteoglycan-depleted cartilage demonstrated with monoclonal antibodies. Histochemistry, 89: 185–188.Search in Google Scholar

Chen H., Huang G., Su T., Gao H., Attieh Z.K., Mc Kie A.T., Anderson G.J., Vulpe C.D. (2006). Decreased hephaestin activity in the intestine of copper-deficient mice causes systemic iron deficiency. J. Nutr., 136: 1236–1241.Search in Google Scholar

Dobrowolski P., Tomaszewska E., Kurlak P., Pierzynowski S.G. (2016). Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats. Exp. Biol. Med., 241: 14–24.Search in Google Scholar

Hochberg Z. (2002). Clinical physiology and pathology of the growth plate. Best Pract. Res. Clin. Endocrinol. Metab., 16: 399–419.10.1053/beem.2002.020812464225Open DOISearch in Google Scholar

Jonas J., Burns J., Abel E.W., Cresswell M.J., Strain J.J., Paterson C.R. (1993). Impaired mechanical strength of bone in experimental copper deficiency. Ann. Nutr. Metab., 37: 245–252.Search in Google Scholar

Kadri A., Ea H.K., Bazille C., Hannouche D., Lioté F., Cohen-Solal M.E. (2008). Osteoprotegerin inhibits cartilage degradation through an effect on trabecular bone in murine experimental osteoarthritis. Arthritis Rheum., 58: 2379–2386.10.1002/art.2363818668550Open DOISearch in Google Scholar

Kwiecień M., Winiarska-Mieczan A., Zawiślak K., Sroka S. (2014). Effect of copper glycinate chelate on biomechanical, morphometric and chemical properties of chicken femur. Ann. Anim. Sci., 14: 127–139.10.2478/aoas-2013-0085Open DOISearch in Google Scholar

Linder M.C., Hazegh-Azam M. (1996). Copper biochemistry and molecular biology. Am. J. Clin. Nutr., 63: 797S–811S.Search in Google Scholar

Massie H.R., Aiello V.R., Shumway M.E., Armstrong T. (1990). Calcium, iron, copper, boron, collagen, and density changes in bone with aging in C57BL/6J male mice. Exp. Gerontol., 25: 469–481.Search in Google Scholar

Männer K., Simon O., Schlegel P. (2006). Effects of different iron, manganese, zinc and copper sources (sulfates, chelates, glycinates) on their bioavailability in early weaned piglets. In: 9. Tagung Schweine- und Geflügelernährung, Rodehutscord M. (ed.). Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, pp. 25–27.Search in Google Scholar

Mesías M., Seiquer I., Pilar Navarro M. (2012). Consumption of highly processed foods: Effects on bioavailability and status of zinc and copper in adolescents. Food Res. Int., 45: 184–190.10.1016/j.foodres.2011.09.030Open DOISearch in Google Scholar

Megahed M.A., Hassanin K.M.A., Youssef I.M.I., Elfghi A.B.A., Amin K.A. (2014). Alterations in plasma lipids, glutathione and homocysteine in relation to dietary copper in rats. J. Invest. Biochem., 3: 21–25.Search in Google Scholar

Muszyński S., Kwiecień M., Tomaszewska E., Świetlicka I., Dobrowolski P., Kasperek K., Jeżewska-Witkowska G. (2017). Effect of caponization on performance and quality characteristics of long bones in Polbar chickens. Poultry Sci., 96: 491–500.10.3382/ps/pew30127591270Open DOISearch in Google Scholar

Nielsen F.H., Milne D.B. (2004). A moderately high intake compared to a low intake of zinc depresses magnesium balance and alters indices of bone turnover in postmenopausal women. Eur. J. Clin. Nutr., 58: 703–710.10.1038/sj.ejcn.160186715116072Open DOISearch in Google Scholar

Ognik K., Stępniowska A., Cholewińska E., Kozłowski K. (2016). The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry Sci., 95: 2045–2051.Search in Google Scholar

Oxlund H., Barckman M., Ørtoft G., Andreassen T.T. (1995). Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone, 17 (4 Suppl.): S365–S371.10.1016/8756-3282(95)00328-BOpen DOISearch in Google Scholar

Palacios C. (2006). The role of nutrients in bone health, from A to Z. Crit. Rev. Food Sci. Nutr., 46: 621–628.10.1080/10408390500466174Open DOISearch in Google Scholar

Pesti G.M., Bakalli R.I. (1996). Studies on the feeding of cupric sulfate pentahydrate and cupric citrate to broiler chickens. Poultry Sci., 75: 1086–1091.10.3382/ps.0751086Open DOISearch in Google Scholar

Reeves P.G., De Mars L.C. (2004). Copper deficiency reduces iron absorption and biological halflife in male rats. J. Nutr., 134: 1953–1957.Search in Google Scholar

Riggins R.S., Cartwright A.G., Rucker R.B. (1979). Viscoelastic properties of copper deficient chick bone. J. Biomech., 12: 197–203.10.1016/0021-9290(79)90142-8Open DOISearch in Google Scholar

Rodríguez J.P., Ríos S., González M. (2002). Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J. Cell. Biochem., 85: 92–100.Search in Google Scholar

Romaña D.L.de, Olivares M., Uauy R., Araya M. (2011). Risks and benefits of copper in light of new insights of copper homeostasis. J. Trace Elem. Med. Biol., 25: 3–13.Search in Google Scholar

Świątkiewicz S., Koreleski J., Zhong D.Q. (2001). The bioavailability of zinc from inorganic and organic sources in broiler chickens as affected by addition of phytase. J. Anim. Feed Sci., 10: 317–328.Search in Google Scholar

Tomaszewska E., Dobrowolski P., Kwiecień M., Burmańczuk N., Badzian B., Szymańczyk S., Kurlak P. (2014). Alterations of liver histomorphology in relation to copper supplementation in inorganic and organic form in growing rats. Bull. Vet. Inst. Pulawy, 58: 479–486.Search in Google Scholar

Tomaszewska E., Dobrowolski P., Bieńko M., Prost Ł., Szymańczyk S., Zdy-bel A. (2015). Effects of 2-oxoglutaric acid on bone morphometry, densitometry, mechanics, and immunohistochemistry in 9-month-old boars with prenatal dexamethasone-induced osteopenia. Connect. Tissue Res., 56: 483–492.Search in Google Scholar

Tomaszewska E., Dobrowolski P., Winiarska-Mieczan A., Kwiecień M., Tomczyk A., Muszyński S., Radzki R. (2016 a). Alteration in bone geometric and mechanical properties, histomorphometrical parameters of trabecular bone, articular cartilage and growth plate in adolescent rats after chronic co-exposure to cadmium and lead in the case of supplementation with green, black, red and white tea. Environ. Toxicol. Pharmacol., 46: 36–44.10.1016/j.etap.2016.06.02727423034Open DOISearch in Google Scholar

Tomaszewska E., Dobrowolski P., Kwiecień M., Winiarska-Mieczan A., Tomczyk A., Muszyński S. (2016 b). The influence of the dietary Cu-glycine complex on the histomorphology of cancellous bone, articular cartilage, and growth plate as well as bone mechanical and geometric parameters is dose-dependent. Biol. Trace Elem. Res., DOI: 10.1007/s12011-016-0894-x.10.1007/s12011-016-0894-x548660027888452Open DOISearch in Google Scholar

Tomaszewska E., Dobrowolski P., Kwiecień M., Wawrzyniak A., Burmańczuk N. (2016 c). Comparison of the effect of a standard inclusion level of inorganic zinc to organic form at lowered level on bone development in growing male Ross broiler chickens. Ann. Anim. Sci., 16: 1–13.10.1515/aoas-2015-0087Open DOISearch in Google Scholar

Tomaszewska E., Muszyński S., Ognik K., Dobrowolski P., Kwiecień M., Juśkiewicz J., Chocyk D., Świetlicki M., Blicharski T., Gładyszewska B. (2017). Comparison of the effect of dietary copper nanoparticles with copper (II) salt on bone geometric and structural parameters as well as material characteristics in a rat model. J. Trace Elem. Med. Biol., DOI: 10.1016/j.jtemb.2017.05.002.10.1016/j.jtemb.2017.05.00228595781Open DOISearch in Google Scholar

Uauy R., Olivares M., Gonzalez M. (1998). Essentiality of copper in humans. Am. J. Clin. Nut., 67 (5 Suppl): 952S–959S.Search in Google Scholar

Urbano M.R., Vitalle M.S., Juliano Y., Amancio O.M. (2002). Iron, copper and zinc in adolescents during pubertal growth spurt. J. Pediatr. (Rio J.), 78: 327–334.Search in Google Scholar

eISSN:
2300-8733
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine