1. bookVolume 17 (2017): Issue 2 (May 2017)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Distribution of non-allelic histone H1 subtypes in five avian species

Published Online: 28 Apr 2017
Volume & Issue: Volume 17 (2017) - Issue 2 (May 2017)
Page range: 385 - 398
Received: 28 Jan 2016
Accepted: 11 Oct 2016
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The arrays of histone H1 subtypes from five avian species (chicken, grey partridge, pheasant, quail and duck) were compared to evaluate their intra- and inter-species variability. The electrophoretic patterns of linker histone preparations revealed the presence of subtypes that occur in all species (H1.a, H1.b, H1.c, H1.c′, H1.d and H5) and those which are confined to some species only (H1.a′, H1.b′, H1.z). In the densitometric profiles of histone H1 bands resolved in one-dimension acetic acid-urea polyacrylamide gel, the quantitative differences were observed both within a species (the ratio of H1.b to H1.d = 8.13 in quail) and between species (the ratio of H1.d in grey partridge and quail = 8.37). The comparable levels of abundant histone H5 that constitute from 53.62% (quail) to 60.86% (duck) of whole linker histone complement were detected in all species. Likewise, the quantification of H1 protein spots separated in a two-dimension SDS-polyacrylamide gel indicated that their intensity ratios could vary up to about 17-fold within a species (the ratio of H1.d to H1.a′ in grey partridge) and up to 10-fold between species (the ratio of pheasant H1.d to quail H1.d). Differences (P<0.05) in the histone H1 subtype levels were found both within and between avian species. A low to moderate range for the coefficients of H1 spot variation (from 0.13 to 0.72) was obtained for several independent histone H1 preparations.

Keywords

Ajiro K., Borun T.W., Solter D. (1981). Quantitative changes in the expression of histone H1 and H2Bsubtypes and their relationship to the differentiation of mouse embryonal carcinoma cells. Dev. Biol., 86: 206-211.Search in Google Scholar

Bhan S., May W., Warren S.L., Sittman D.B. (2008). Global gene expression analysis reveals specific and redundant roles for H1 variants, H1c and H10, in gene expression regulation. Gene, 414: 10-18.Search in Google Scholar

Catez F., Ueda T., Bustin M. (2006). Determinants of histone H1 mobility and chromatin binding in living cells. Nat. Struct. Mol. Biol., 13: 305-310.Search in Google Scholar

Clausell J., Happel N., Hale T.K., Doenecke D., Beato M. (2009). Histone H1 subtypes differently modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNFor NURF. PLo S One, 4: e0007243. doi: 10.1371/journal.pone.0007243.Search in Google Scholar

Daujat S., Zeissler U., Waldmann T., Happel N., Schneider R. (2005). HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J. Biol. Chem., 280: 38090-38095.Search in Google Scholar

Fan Y., Sirotkin A.M., Russel R.G., Ayala J., Skoultchi A.I. (2001). Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1(0) replacement subtype. Mol. Cell. Biol., 21: 7933-7943.Search in Google Scholar

Fan Y., Nikitina T., Zhao J., Fleury T.J., Bhattacharyya R., Bouhassira E.E., Stein A., Woodcock C.L., Skoultchi A.I. (2005). Histone H1 depletion in mammals alter global chromatin structure but causes specific changes in gene regulation. Cell, 123: 1199-1212.Search in Google Scholar

Garg M., Perumalsamy L.R., Shivashankar G.V., Sarin A. (2014). The linker histone H1.2 is an intermediate in the aptoptotic response to cytokine deprivation in T-effectors. Int. J. Cell Biol., 2014: 674753. doi: 10.1155/2014/674753.Search in Google Scholar

Hansen J.C. (2002). Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Ann. Rev. Biophys. Biomol. Struct., 31: 361-392.Search in Google Scholar

Happel N., Doenecke D. (2009). Histone H1 and its isoforms: contribution to chromatin structure and function. Gene, 431: 1-12.Search in Google Scholar

Happel N., Warneboldt J., Hänecke K., Haller F., Doenecke D. (2009). H1 subtype expression during cell proliferation and growth arrest. Cell Cycle, 8: 2226-2232.Search in Google Scholar

Hashimoto H., Takami Y., Sonoda E., Iwasaki T., Iwano H., Tachibana M., Takeda S., Nakayama T., Kimura H., Shinkai Y. (2010). Histone H1 null vertebrate cells exhibit altered nucleosome architecture. Nucleic Acids Res., 38: 3533-3545.Search in Google Scholar

Hergeth S.P., Schneider R. (2015). The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep., 16: 1439-1453.Search in Google Scholar

Izzo A., Schneider R. (2016). The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. Biochim. Biophys. Acta, 1859: 486-495.Search in Google Scholar

Izzo A., Kamieniarz K., Schneider R. (2008). The histone H1 family: specific members, specific functions? Biol. Chem., 389: 333-343.Search in Google Scholar

Izzo A., Kamieniarz - Gdula K., Ramirez F., Noureen N., Kind J., Manke T.,van Steensel B., Schneider R. (2013). The genomic landscape of the somatic linker histone subtypes H1.1 to H1.5 in human cells. Cell Rep., 3: 2142-2154.Search in Google Scholar

Kalashnikova A.A., Rogge R.A., Hansen J.C. (2016). Linker histone H1 and protein-protein interactions. Biochim. Biophys. Acta, 1859: 455-461.Search in Google Scholar

Kavi H., Lu X., Xu N., Bartholdy B.A., Vershilova E., Skoultchi A.I., Fyodorov D.V. (2015). Agenetic screen and transcript profiling revealedashared regulatory program for Drosophila linker histone H1 and chromatin remodeler CHD1. G3, 5: 677-687.Search in Google Scholar

Kowalski A. (2015). Abundance of intrinsic structural disorder in the histone H1 subtypes. Comput. Biol. Chem., 59: 16-27.Search in Google Scholar

Kowalski A., Pałyga J. (2011). Chromatin compaction in terminally differentiated avian blood cells: the role of linker histone H5 and non-histone protein MENT. Chromosome Res., 19: 579-590.Search in Google Scholar

Kowalski A., Pałyga J. (2012 a). Linker histone subtypes and their allelic variants. Cell Biol. Int., 36: 981-996.10.1042/CBI2012013323075301Search in Google Scholar

Kowalski A., Pałyga J. (2012 b). High-resolution two-dimensional polyacrylamide gel electrophoresis: Atool for identification of polymorphic and modified linker histone components. In: Gel Electrophoresis - Principles and Basics, Magdeldin S. (ed.). In Tech (Croatia), pp. 117-136.10.5772/38235Search in Google Scholar

Kowalski A., Pałyga J. (2016). Modulation of chromatin function through linker histone H1 variants. Biol. Cell, 108: 1-18.Search in Google Scholar

Koutzamani E., Loborg H., Sarg B., Lindner H.H., Rundquist I. (2002). Linker histone subtype composition and affinity for chromatin in situ in nucleated mature erythrocytes. J. Biol. Chem., 227: 44688-44694.Search in Google Scholar

Lennox R.W., Cohen L.H. (1984). The alterations in histone H1 complement during mouse spermatogenesis and their significance for H1 subtype function. Dev. Biol., 103: 80-84.Search in Google Scholar

Lu H., Hamkalo B., Parseghian M.H., Hansen J.C. (2009). Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder. Biochemistry, 48: 164-172.Search in Google Scholar

Medrzycki M., Zhang Y., Cao K., Fan Y. (2012). Expression analysis of mammalian linkerhistone subtypes. J. Vis. Exp., (61). doi: 10.3791/3577.Search in Google Scholar

Meergans T., Albig W., Doenecke D. (1997). Varied expression patterns of human histone H1 genes in different cell lines. DNA Cell Biol., 16: 1041-1049.Search in Google Scholar

Millãn- Ariño L., Izquierdo-Bouldstridge A., Jordan A. (2016). Specificities and genomic distribution of somatic mammalian histone H1 subtypes. Biochim. Biophys. Acta, 1859: 510-519.Search in Google Scholar

Montes de Oca R., Lee K.K., Wilson K.L. (2005). Binding of barrier to autointegration factor (BAF) to histone H3 and selected linker histones including H1.1. J. Biol. Chem., 280: 42252-42262.Search in Google Scholar

Neelin J.M., Neelin E.M., Lindsay D.W., Pałyga J., Nichols C.R., Cheng K.M. (1995). The occurrence ofamutant dimerizable histone H5 in Japanese quail erythrocytes. Genome, 38: 982-990.Search in Google Scholar

Ni J.Q., Liu L.P., Hess D., Rietdorf J., Sun F.L. (2006). Drosophila ribosomal proteins are associated with linker histones H1 and suppress gene transcription. Gene. Dev., 20: 1959-1973.Search in Google Scholar

Over R.S., Michaels S.D. (2014). Open and closed: the roles of linker histones in plants and animals. Mol. Plant, 7: 481-491.Search in Google Scholar

Pałyga J. (1991). Acomparison of the histone H1 complements of avian erythrocytes. Int. J. Biochem., 23: 845-849.Search in Google Scholar

Parseghian M.H. (2015). What is the role of histone H1 heterogeneity? AIMS Biophys., 2: 724-772.Search in Google Scholar

Parseghian M.H., Newcomb R.L., Winokur S.T., Hamkalo B.A. (2000). The distribution of somatic H1 subtypes is non-random on active vs. inactive chromatin: distribution in human fetal fibroblasts. Chromosome Res., 8: 405-424.Search in Google Scholar

Peng Z., Mizianty M.J., Xue B., Kurgan L., Uversky V.N. (2012). More than just tails: intrinsic disorder in histone proteins. Mol. Biosyst., 8: 1886-1901.Search in Google Scholar

Routh A., Sandin S., Rhodes D. (2008). Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc. Natl. Acad. Sci. USA, 105: 8872-8877.Search in Google Scholar

Sarg B., Lopez B., Lindner H., Ponte I., Suau P., Roque A. (2014). Sequence conservation of linker histones between chicken and mammalian species. Data Brief, 1: 60-64.Search in Google Scholar

Sarg B., Lopez R., Lindner H., Ponte I., Suau P., Roque A. (2015). Identification of novel post-translational modifications in linker histones from chicken erythrocytes. J. Proteomics, 113: 162-177.Search in Google Scholar

Shannon M.F., Wells J.R.E. (1987). Characterization of the six chicken histone H1 proteins and alignment with their respective genes. J. Biol. Chem., 262: 9664-9668.Search in Google Scholar

She W., Grimanelli D., Rutowicz K., Whitehead M.W.J., Puzio M., Kotliński M., Jerzmanowski A., Baroux C. (2013). Chromatin reprogramming during the somatic-toreproductive cell fate transition in plants. Development, 140: 4008-4019.Search in Google Scholar

Soria G., Polo S.E., Almouzni G. (2012). Prime, repair, restore: the active role of chromatin in the DNAdamage response. Mol. Cell, 46: 722-734.Search in Google Scholar

Talbert P.B., Ahmad K., Almouzni G., Ausio J., Berger F., Bhalla P.L., Bonner W.M., Cande W.Z., Chadwick B., Chan S.W.L., Cross G.A.M,, Cui L., Dimitrov S.I., Doenceke D., Eirin-Lopez J.M., Gorovsky M.A., Hake S.B., Hamkalo B.A., Holec S., Jacobsen S.E., Kamieniarz K., Kchohbin S., Ladurner A.G., Landsman D., Latham J.A., Loppin B., Malik H.S., Marzluff W.F., Pehrson J.R., Postberg J., Schneider R., Singh M.B., Smith M.M., Thompson E., Torres - Padilla M-E., Tremethick D.J., Turner B.M., Waterborg J.H., Wollmann H., Yelagandula R., Zhu B., Henikoff S. (2012). Aunified phylogeny-based nomenclature for histone variants. Epigenet. Chromatin, 5: 7. doi: 10.1186/1756-8935-5-7.Search in Google Scholar

Th’ng J.P., Sung R., Ye M., Hendzel M.J. (2005). H1 family histone in the nucleus. Control of binding and localization by the C-terminal domain. J. Biol. Chem., 280: 27809-27814.Search in Google Scholar

Yang S-M., Kim B.J., Norwood Toro L., Skoultchi A.I. (2013). H1 linker histone promotes epigenetic silencing by regulating both DNAmethylation and histone H3 methylation. Proc. Natl. Acad. Sci. USA, 110: 1708-1713.Search in Google Scholar

Zhang Y., Liu Z., Medrzycki M., Cao K., Fan Y. (2012). Reduction of Hox gene expression by histone H1 depletion. PLo S One, 7:e38829. doi: 10.1371/journal.pone.0038829. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo