1. bookVolume 24 (2016): Issue 2 (December 2016)
Journal Details
License
Format
Journal
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
access type Open Access

Antioxidative Responses of Microalgae to Heavy Metals

Published Online: 24 Jan 2018
Page range: 23 - 31
Journal Details
License
Format
Journal
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
Abstract

Microalgae are unicellular free living entities and therefore their responses to excess of heavy metals must be faster and more efficient than those in vascular plants protected by various types of tissues. Up to date, numerous studies reported metal bioaccumulation potential of algae but metabolic responses have relatively rarely been monitored. Here I provide basic overview of quantitative changes of ascorbic acid (AA), reduced glutathione (GSH), phytochelatins (PCs) and selected related enzymes (ascorbate peroxidase and glutathione reductase) in some common microalgae exposed to various metals (cadmium mainly). Despite various culture and exposure conditions, some common signs of metal toxicity (including e.g. enhancement of phytochelatin biosynthesis) are clearly identifiable in algae. Other metal chelators such as organic acids are also briefly mentioned. Comparison with macroalgae, mosses and vascular plants is discussed in terms of basal values and evolutionary similarities.

Keywords

Braütigam A., Schaumlöffel D., Preud'homme H., Thondorf I. & Wesenberg D. 2011. Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii. Plant Cell Environ. 34: 2071-2082.Search in Google Scholar

Dresler S., Hanaka, A., Bednarek, W. & Maksymiec W. 2014. Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiol. Plant. 36: 1565-1575.Search in Google Scholar

El-Naggar A. H. & El-Sheekh M. M. 1998. Abolishing cadmium toxicity in Chlorella vulgaris by ascorbic acid, calcium, glucose and reduced glutathione. Environ. Pollut. 101: 169-174.Search in Google Scholar

Fargašová A. 2012. Physiological parameters utilization for metals ecotoxicity determination. Acta Environ. Univ. Comenianae (Bratislava). 20: 7-13.Search in Google Scholar

Gest N., Gautier H. & Stevens R. 2013. Ascorbate as seen through plant evolution: the rise of a successful molecule? J. Exp. Bot. 64: 33-53.Search in Google Scholar

Goiris K., Van Colen W., Wilches I., León-Tamariz F., De Cooman L. & Muylaert K. 2015. Impact of nutrient stress on antioxidant production in three species of microalgae. Algal. Res. 7: 51-57.Search in Google Scholar

Hamed S. M., Zinta G., Klöck G., Asard H., Selim S. & Abdelgawad H. 2017. Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotox. Environ. Safe. 140: 256-263.Search in Google Scholar

Hermsen C., Koprivova A., Matthewman C., Wesenberg D., Krauss G.-J. & Kopriva S. 2010. Regulation of sulphate assimilation in Physcomitrella patens: mosses are different! Planta. 232: 461-470.Search in Google Scholar

Kováčik J., Babula P., Klejdus B., Hedbavny J. & Jarošová M. 2014. Unexpected behavior of some nitric oxide modulators under cadmium excess in plant tissue. PLoS ONE. 9(3): e91685, doi:10.1371/journal.pone.0091685.Search in Google Scholar

Kováčik J., Klejdus B., Babula P. & Hedbavny J. 2015. Nitric oxide donor modulates cadmium-induced physiological and metabolic changes in the green alga Coccomyxa subellipsoidea. Algal Res. 8: 45-52.Search in Google Scholar

Kováčik J., Klejdus B., Babula P. & Hedbavny J. 2016. Age affects not only metabolome but also metal toxicity in Scenedesmus quadricauda cultures. J. Hazard. Mater. 306: 58-66.Search in Google Scholar

Kováčik J., Babula P., Peterková V. & Hedbavny J. 2017a. Long-term impact of cadmium shows little damage in Scenedesmus acutiformis cultures. Algal Res. 25: 184-190.Search in Google Scholar

Kováčik J., Klejdus B., Babula P. & Hedbavny J. 2017b. Ascorbic acid affects short-term response of Scenedesmus quadricauda to cadmium excess. Algal Res. 24: 354-359.Search in Google Scholar

Kováčik J., Babula P. & Hedbavny J. 2017c. Comparison of vascular and non-vascular aquatic plant as indicators of cadmium toxicity. Chemosphere. 180: 86-92.Search in Google Scholar

Lin S.-T., Chiou C.-W., Chu Y.-L., Hsiao Y., Tseng Y.-F., Chen Y.-C., Chen H.-J., Chang H.-Y. & Lee T.-M. 2016. Enhanced ascorbate regeneration via dehydroascorbate reductase confers tolerance to photo-oxidative stress in Chlamydomonas reinhardtii. Plant Cell Physiol. 57: 2104-2121.Search in Google Scholar

Machado M. D. & Soares E. V. 2016. Short- and long-term exposure to heavy metals induced oxidative stress response in Pseudokirchneriella subcapitata. Clean – Soil, Air, Water 44: 1578-1583.Search in Google Scholar

Mellado M., Contreras R. A., González A., Dennett G. & Moenne A. 2012. Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta). Plant Physiol. Biochem. 51: 102-108.Search in Google Scholar

Nowicka B., Pluciński B., Kuczyńska, P. & Kruk J. 2016. Physiological characterization of Chlamydomonas reinhardtii acclimated to chronic stress induced by Ag, Cd, Cr, Cu and Hg ions. Ecotox. Environ. Safe. 130: 133-145.Search in Google Scholar

Perales-Vela H. V., Pena-Castro J. M. & Canizares-Villanueva R. O. 2006. Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64: 1-10.Search in Google Scholar

Piotrowska-Niczyporuk A., Bajguz A., Talarek M., Bralska M. & Zambrzycka E. 2015. The effect of lead on the growth, content of primary metabolites, and antioxidant response of green alga Acutodesmus obliquus (Chlorophyceae). Environ. Sci. Pollut. Res. 22: 19112-19123.Search in Google Scholar

Pokora W., Bascik-Remisiewicz A., Tukaj S., Kalinowska R., Pawlik-Skowronska B., Dziadziuszko M. & Tukaj Z. 2014. Adaptation strategies of two closely related Desmodesmus armatus (green alga) strains contained different amounts of cadmium: A study with light-induced synchronized cultures of algae. J. Plant Physiol. 171: 69-77.Search in Google Scholar

Romano R. L., Liria C. W., Machini M. T., Colepicolo P. & Zambotti-Villela L. 2017. Cadmium decreases the levels of glutathione and enhances the phytochelatin concentration in the marine dinoflagellate Lingulodinium polyedrum. J. Appl. Phycol. 29: 811-820.Search in Google Scholar

Ruiz-Domínguez M.C., Vaquero I., Obregón V., De La Morena B., Vílchez C. & Vega J. M. 2015. Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation. J. Appl. Phycol. 27: 1099-1108.Search in Google Scholar

Simmons D. B. D., Hayward A. R., Hutchinson T. C. & Neil Emery R. J. 2009. Identification and quantification of glutathione and phytochelatins from Chlorella vulgaris by RP-HPLC ESI-MS/MS and oxygen-free extraction. Anal. Bioanal. Chem. 395: 809-817.Search in Google Scholar

Šmelková M., Molnárová M. & Fargašová A. 2013. Phytotoxic effects of nickel (Ni2+) on Sinapis alba L. seedlings. Acta Environ. Univ. Comenianae (Bratislava). 21: 69-79.Search in Google Scholar

Tóthová L., Blahušová E. & Molnárová M. 2011. Bioaccumulation of Zn and Cu in selected macrophyte species from reservoir Gabčíkovo. Acta Environ. Univ. Comenianae (Bratislava). 19: 99-107.Search in Google Scholar

Vidal-Meireles A., Neupert J., Zsigmond L., Rosado-Souza L., Kovács L., Nagy V., Galambos A., Fernie A. R., Bock R. & Tóth S. Z. 2017. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-L-galactose phosphorylase. New Phytol. 214: 668-681.Search in Google Scholar

Yusof Y. A. M., Basari J. M. H., Mukti N. A., Sabuddin R., Razak Muda A., Sulaiman S., Makpol S. & Wan Ngah W. Z. 2011. Fatty acids composition of microalgae Chlorella vulgaris can be modulated by varying carbon dioxide concentration in outdoor culture. Afr. J. Biotechnol. 10: 13536-13542.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo