Open Access

A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2


Cite

1. P. P. Spicer, J. D. Kretlow, S. Young, J. A. Jansen, F. K. Kasper and A. G. Mikos, Evaluation of bone regeneration using the rat critical size calvarial defect, Nat. Protoc. 7 (2012) 1918-1929; DOI: 10.1038/ nprot.2012.113.10.1038/nprot.2012.113Search in Google Scholar

2. D. Hadjidakis and I. Androulakis, Bone remodeling, Ann. N. Y. Acad. Sci. 1092 (2006) 385-396; DOI: 10.1196/annals.1365.035.10.1196/annals.1365.035Search in Google Scholar

3. J. M. Wozney and V. Rosen, Bone morphogenetic protein and bone morphogenetic protein family in bone formation and repair, Clin. Orthop. 346 (1998) 26-37.Search in Google Scholar

4. J. G. Devine, J. R. Dettori, J. C. France, E. Brodt and R. A. McGuire, The use of rhBMP in spine surgery: Is there a cancer risk?, Evid Based Spine Care J. 3 (2012) 35-41; DOI: 10.1055/s-0031-1298616.10.1055/s-0031-1298616Search in Google Scholar

5. N. E. Epstein, Complications due to the use of BMP/INFUSE in spine surgery: The evidence continues to mount, Surg. Neurol. Int. 4 (2013) S343-S352; DOI: 10.4103/2152-7806.114813.10.4103/2152-7806.114813Search in Google Scholar

6. J. W. Hustedt and D. J. Blizzard, The controversy surrounding bone morphogenetic proteins in the spine: a review of current research, Yale J. Biol. Med. 87 (2014) 549-561.Search in Google Scholar

7. J. O. Hollinger, H. Uludag and S. R. Win, Sustained release emphasizing recombinant human bone morphogenetic protein-2, Adv. Drug Deliv. Rev. 31 (1998) 303-318; DOI: 10.1016/S0169-409X(97)00126-9.10.1016/S0169-409X(97)00126-9Search in Google Scholar

8. D. S. Keskin, A. Texcaner, P. Korkusuz, F. Korkusuz and V. Hasirci, Collagen-chondroitin sulfatebased PLLA-SAIB-coated rhBMP-2 delivery system for bone repair, Biomaterials 26 (2005) 4023-4034; DOI: 10.1016/j.biomaterials.2004.09.063.10.1016/j.biomaterials.2004.09.063Search in Google Scholar

9. M. P. Ginebra, T. Traykova and J. A. Planell, Calcium phosphate cements as bone drug delivery systems: A review, J. Control. Release 113 (2006) 102-110; DOI: 10.1016/j.jconrel.2006.04.007.10.1016/j.jconrel.2006.04.007Search in Google Scholar

10. S. Thanyaphoo and J. Kaewsrichan, Synthesis and evaluation of novel glass ceramics as drug delivery systems in osteomyelitis, J. Pharm. Sci. 101 (2012) 2870-2882; DOI: 10.1002/jps.23230.10.1002/jps.23230Search in Google Scholar

11. I. Capila and R. J. Linhardt, Heparin-protein interactions, Angew.Chem. Int. Ed. Engl. 41 (2002) 391-412; DOI: 10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-B.10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-BSearch in Google Scholar

12. D. R. Bhumkar and V. B. Pokharkar, Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note, AAPS PharmSciTech. 7 (2006) E138-E143; DOI: 10.1208/ pt070250.10.1208/pt070250Search in Google Scholar

13. B. Dick, K. G. Schmidt, D. Eisenmann and N. Pfeiffer, A new method for direct detection of heparin on surface-modified intraocular lenses: A modification of Jaques’ toluidine blue staining method, Ophthalmologica 211 (1997) 75-78.Search in Google Scholar

14. P. K. Smith, A. K. Mallia and G. T. Hermanson, Colorimetric method for the assay of heparin content in immobilized heparin preparations, Anal. Biochem. 109 (1980) 466-473.10.1016/0003-2697(80)90679-XSearch in Google Scholar

15. H. Liu and C. Gao, Preparation and properties of ionically cross-linked chitosan nanoparticles, Polym. Adv. Technol. 20 (2009) 613-619; DOI: 10.1002/pat.1306.10.1002/pat.1306Search in Google Scholar

16. S. Murugesan, J. Xie and R. J. Linhardt, Immobilization of Heparin: Approaches and Applications, Curr. Top Med. Chem. 8 (2008) 80-100.Search in Google Scholar

17. E. Laemmel, J. Penhoat, R. Warocquier-Clérout and M. F. Sigot-Luizard, Heparin immobilized on proteins usable for arterial prosthesis coating: growth inhibition of smooth-muscle cells, J. Biomed. Mater. Res. 39 (1998) 446-452; DOI: 10.1002/(SICI)1097-4636(19980305)39:3<446::AID-JBM14>3.0.CO;2-8.10.1002/(SICI)1097-4636(19980305)39:3<446::AID-JBM14>3.0.CO;2-8Search in Google Scholar

18. P. B. van Wachem, J. A. Plantinga, M. J. Wissink, R. Beernink, A. A. Poot, G. H. Engbers, T. Beugeling, W. G. van Aken, J. Feijen and M. J. van Luyn, In vivo biocompatibility of carbodiimidecrosslinked collagen matrices: Effects of crosslink density, heparin immobilization, and bFGF loading, J. Biomed. Mater. Res. 55 (2001) 368-378; DOI: 10.1002/1097-4636(20010605)55:3<368::AIDJBM1025> 3.0.CO;2-5.Search in Google Scholar

19. Z. Grabarek and J. Gergely, Zero-length crosslinking procedure with the use of active esters, Anal. Biochem. 185 (1990) 131-135; DOI: 10.1016/0003-2697(90)90267-D.10.1016/0003-2697(90)90267-DSearch in Google Scholar

20. R. J. Linhardt, Perspective: 2003 Claude S. Hudson Award Address in Carbohydrate Chemistry. Heparin: Structure and Activity, J. Med. Chem. 46 (2003) 2551-2554; DOI: 10.1021/jm030176m.10.1021/jm030176mSearch in Google Scholar

21. T. Y. Liu, L. Y. Huang, S. H. Hu, M. C. Yang and S. Y. Chen, Core-Shell Magnetic Nanoparticles of heparin conjugate as recycling anticoagulants, J. Biomed. Nanotechnol. 3 (2007) 353-359; DOI: http://dx.doi.org/10.1166/jbn.2007.044.10.1166/jbn.2007.044Search in Google Scholar

22. R. Ruppert, E. Hoffmann and W. Sebald, Human bone morphogenetic protein 2 contains a heparin binding site which modifies its biological activity, Eur. J. Biochem. 237 (1996) 295-302; DOI: 10.1111/j.1432-1033.1996.0295n.x.10.1111/j.1432-1033.1996.0295n.xSearch in Google Scholar

23. U. Lindahl and L. Kjellen, Heparin or heparan sulfate - what is the difference?, Thromb. Haemost. 66 (1991) 44-48.10.1055/s-0038-1646372Search in Google Scholar

24. R. Guan, X. L. Sun, S. Hou, P. Wu and E.L. Chaikof, A glycopolymer chaperone for fibroblast growth factor-2, Bioconjug. Chem. 15 (2004) 145-151; DOI: 10.1021/bc034138t.10.1021/bc034138tSearch in Google Scholar

25. T. Takada, T. Katagiri, M. Ifuku, N. Morimura, M. Kobayashi, K. Hasegawa, A. Ogamo and R. Kamijo, Sulfated polysaccharides enhance the biological activities of bone morphogenetic proteins, J. Biol. Chem. 278 (2003) 43229-43235; DOI: 10.1074/jbc.M300937200.10.1074/jbc.M300937200Search in Google Scholar

26. C. Scheufler, W. Sebald and M. Hϋlsmeyer, Crystal structure of human bone morphogenetic protein-2 at 2.7 Å resolution, J. Mol. Biol. 287 (1999) 103-115; DOI: 10.1006/jmbi.1999.2590.10.1006/jmbi.1999.2590Search in Google Scholar

27. X. Li, J. Xu, T. M. Filion, D. C. Ayers and J. Song, pHEMA-nHA encapsulation and delivery of vancomycin and rhBMP-2 enhances its role as a bone graft substitute, Clin. Orthop. Relat. Res. 471 (2013) 2540-2547; DOI: 10.1007/s11999-012-2644-5.10.1007/s11999-012-2644-5Search in Google Scholar

28. E. R. Balmayor, G. A. Feichtinger, H. S. Azevedo, M. van Griensven and R. L. Reis, Starch-poly-ecaprolactone microparticles reduce the needed amount of BMP-2, Clin. Orthop. Relat. Res. 467 (2009) 3138-3148; DOI: 10.1089/ten.2006.0194.10.1089/ten.2006.0194Search in Google Scholar

29. E. Zerath, X. Holy, B. Noël, A. Malouvier, M. Hott and P. J. Marie, Effects of BMP-2 on osteoblastic cells and on skeletal growth and bone formation in unloaded rats, Growth Horm. IGF Res. 8 (1998) 141-149.10.1016/S1096-6374(98)80104-4Search in Google Scholar

30. H. S. Sandhu, L. E. Kanim, J. M. Kabo, J. M. Toth, E. N. Zeegen, D. Liu, R. B. Delamarter and E. G. Dawson, Effective doses of recombinant human bone morphogenetic protein-2 in experimental spinal fusion, Spine (Phila Pa 1976) 21 (1996) 2115-2122.10.1097/00007632-199609150-000128893436Search in Google Scholar

eISSN:
1846-9558
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other