Cite

1. Mazuch J, Čapov I, Kalač J et al. Chirurgické aspekty chronickej venóznej insuficiencie dolných končatín. Martin: Osveta; 2006.Search in Google Scholar

2. Chwała M, Szczeklik W, Szczeklik M et al. Varicose veins of lower extremities, hemodynamics and treatment methods. Adv Clin Exp Med 2015; 24(1): 5-14.10.17219/acem/3188025923081Search in Google Scholar

3. Raffetto JD, Mannello F. Pathophysiology of chronic venous disease. Int Angiol. 2014; 33(3): 212-21.Search in Google Scholar

4. Eberhardt RT, Raffetto JD. Chronic venous insufficiency. Circulation 2014;130(4): 333-46.10.1161/CIRCULATIONAHA.113.00689825047584Search in Google Scholar

5. Rabe E, Pannier F. Clinical, aetiological, anatomical and pathological classification (CEAP): gold standard and limits. Phlebology 2012;27 Suppl 1: 114-8.10.1258/phleb.2012.012s1922312077Search in Google Scholar

6. Pannier F, Rabe E. Progression in venous pathology. Phlebology 2015; 30(1 Suppl): 95-7.10.1177/026835551456884725729075Search in Google Scholar

7. Coleridge-Smith P, Bergan JJ. Inflammation in Venous Disease. In: Schmid-Schönbein GW, Granger ND. Molecular Basis for Microcirculatory Disorders. Paris: Springer-Verlag; 2003: 489-500.10.1007/978-2-8178-0761-4_25Search in Google Scholar

8. Meissner MH1, Moneta G, Burnand K et al. Meissner The hemodynamics and diagnosis of venous disease. J Vasc Surg 2007; 46 (Suppl S): 4S-24S.10.1016/j.jvs.2007.09.04318068561Search in Google Scholar

9. Markovic JN, Shortell CK. Genomics of varicose veins and chronic venous insufficiency. Semin Vasc Surg 2013; 26(1): 2-13.10.1053/j.semvascsurg.2013.04.00323932556Search in Google Scholar

10. Meissner MH, Gloviczki P, Bergan J et al. Primary chronic venous disorders. J Vasc Surg 2007; 46 Suppl S: 54S-67S.10.1016/j.jvs.2007.08.03818068562Search in Google Scholar

11. Oklu R, Habito R, Mayr M et al. Pathogenesis of varicose veins J Vasc Interv Radiol. 2012; 23(1): 33-9.Search in Google Scholar

12. Segiet OA, Brzozowa-Zasada M, Piecuch A et al. Biomolecular mechanisms in varicose veins development. Ann Vasc Surg 2015; 29(2): 377-84.10.1016/j.avsg.2014.10.00925449990Search in Google Scholar

13. Navrátilová Z. Patients with venous leg ulcus in an outpatient general practicioner. Med. Pro Praxi 2010; 7(6 a 7): 280–283.Search in Google Scholar

14. Subramoniam V, Riju RM, Pradeep J et al. Chronic Venous Disorders of the Lower Limbs: A Surgical Approach. New Delhi: Springer; 2014.Search in Google Scholar

15. Rhoades R, Bell DR. Medical Physiology: Principles for Clinical Medicine. Baltimore: Lippincott Williams & Wilkins; 2009.Search in Google Scholar

16. Gräub AB, Naef M, Wagner HE et al. More great saphenous vein valves - less varicose veins? Vasa 2014; 43(4): 260-5.Search in Google Scholar

17. Surendran S, S Ramegowda K, Suresh A et al. Arterialization and anomalous vein wall remodeling in varicose veins is associated with upregulated FoxC2-Dll4 pathway. Lab Invest 2016 Jan 25. doi: 10.1038/labinvest.2015.167. [Epub ahead of print]10.1038/labinvest.2015.16726808710Search in Google Scholar

18. Tran NT, Meissner MH. The epidemiology, pathophysiology, and natural history of chronic venous disease. Semin Vasc Surg 2002; 15(1): 5-12.10.1016/S0895-7967(02)70010-0Search in Google Scholar

19. Naoum JJ, Hunter GC. Pathogenesis of Varicose Veins and Implications for Clinical Management. Vascular 2007; 15(5): 242-249.10.2310/6670.2007.0006917976322Search in Google Scholar

20. Bolognia JL, Jorizzo JL, Schaffer JFV. Dermatology. Bolognia: Elsevier Health Sciences, 2012, 2776 p.Search in Google Scholar

21. Feldman SR, Sangueza OP, Pichardo-Geisinger R et al. Dermatopathology Primer of Inflammatory Diseases. Boca Ranton: CRC Press; 2013.10.1201/b16122Search in Google Scholar

22. Wollina U, Abdel-Naser MB, Mani R. A review of the microcirculation in skin in patients with chronic venous insufficiency: the problem and the evidence available for therapeutic options. Int J Low Extrem Wounds 2006; 5(3): 169-80.10.1177/153473460629187016928673Search in Google Scholar

23. Wali MA, Dewan M, Eid RA. Histopathological changes in the wall of varicose veins. Int Angiol 2003; 22(2): 188-93.Search in Google Scholar

24. Piazza G. Varicose veins. Circulation 2014; 130(7): 582-7.10.1161/CIRCULATIONAHA.113.00833125114187Search in Google Scholar

25. Lim CS, Davies AH. Pathogenesis of primary varicose veins. Br J Surg 2009; 96(11): 1231-42.10.1002/bjs.679819847861Search in Google Scholar

26. Aunapuu M, Arend A. Histopathological changes and expression of adhesion molecules and laminin in varicose veins. Vasa 2005; 34(3): 170-5.10.1024/0301-1526.34.3.17016184835Search in Google Scholar

27. Chi YW, Raffetto JD. Venous leg ulceration pathophysiology and evidence based treatment. Vasc Med 2015; 20(2): 168-81.10.1177/1358863X1456867725832604Search in Google Scholar

28. Mannello F, Ligi D, Raffetto JD. Glycosaminoglycan sulodexide modulates inflammatory pathways in chronic venous disease. Int Angiol 2014; 33(3): 236-42.Search in Google Scholar

29. Velázquez F, Grodecki-Pena A, Knapp A et al. CD43 Functions as an E-Selectin Ligand for Th17 Cells In Vitro and Is Required for Rolling on the Vascular Endothelium and Th17 Cell Recruitment during Inflammation In Vivo. J Immunol 2016; 196(3): 1305-16.10.4049/jimmunol.1501171472455226700769Search in Google Scholar

30. Granger DN, Senchenkova E. Inflammation and the Microcirculation. San Rafael: Morgan & Claypool Life Sciences; 2010.10.4199/C00013ED1V01Y201006ISP008Search in Google Scholar

31. Ashworth JJ, Smyth JV, Pendleton N et al. Polymorphisms spanning the 0N exon and promoter of the estrogen receptor-beta (ERbeta) gene ESR2 are associated with venous ulceration. Clin Genet 2008; 73(1): 55-61.10.1111/j.1399-0004.2007.00927.x18070128Search in Google Scholar

32. Vijayan V, Smith FC, Angelini GD et al. External supports and the prevention of neointima formation in vein grafts. Eur J Vasc Endovasc Surg 2002; 24(1): 13-22.10.1053/ejvs.2002.167612127843Search in Google Scholar

33. Kleinedler JJ, Foley JD, Orchard EA et al. Novel nanocomposite stent coating releasing resveratrol and quercetin reduces neointimal hyperplasia and promotes re-endothelialization. J Control Release 2012; 159(1): 27-33.10.1016/j.jconrel.2012.01.00822269665Search in Google Scholar

34. Danenberg HD, Welt FG, Walker M et al. Systemic inflammation induced by lipopolysaccharide increases neointimal formation after balloon and stent injury in rabbits. Circulation 2002; 105(24): 2917-22.10.1161/01.CIR.0000018168.15904.BB12070123Search in Google Scholar

35. Desai M, Mirzay-Razzaz J, von Delft D et al. Inhibition of neointimal formation and hyperplasia in vein grafts by external stent/sheath. Vasc Med 2010; 15(4): 287-97.10.1177/1358863X1036647920511293Search in Google Scholar

36. Pocock ES, Alsaigh T, Mazor R et al. Cellular and molecular basis of Venous insufficiency. Vasc Cell 2014; 6(1): 24.10.1186/s13221-014-0024-5426879925520775Search in Google Scholar

37. Sakurai T, Yoshiga D, Ariyoshi W et al. Essential role of mitogen-activated protein kinases in IL-17A-induced MMP-3 expression in human synovial sarcoma cells. BMC Res Notes 2016; 9(1): 68.10.1186/s13104-016-1892-y474308926850593Search in Google Scholar

38. Martano M, Corteggio A, Restucci B et al. Extracellular matrix remodeling in equine sarcoid: an immunohistochemical and molecular study. BMC Vet Res 2016; 12(1): 24.10.1186/s12917-016-0648-1473664226838095Search in Google Scholar

39. Amin M, Pushpakumar S, Muradashvili N et al. Regulation and involvement of matrix metalloproteinases in vascular diseases. Front Biosci (Landmark Ed) 2016; 21: 89-118.10.2741/4378546246126709763Search in Google Scholar

40. Chen YC, Wu YR, Mesri M et al. Associations of Matrix Metalloproteinase-9 and Tissue Inhibitory Factor-1 Polymorphisms With Parkinson Disease in Taiwan. Medicine (Baltimore) 2016; 95(5): e2672.10.1097/MD.0000000000002672474891826844501Search in Google Scholar

41. MacColl E, Khalil RA. Matrix Metalloproteinases as Regulators of Vein Structure and Function: Implications in Chronic Venous Disease. J Pharmacol Exp Ther 2015; 355(3): 410-28.10.1124/jpet.115.227330465848626319699Search in Google Scholar

42. Kucukguven A, Khalil RA. Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins. Curr Drug Targets 2013; 14(3): 287-324.Search in Google Scholar

43. Gomez I, Benyahia C, Louedec L et al. Decreased PGE content reduces MMP-1 activity and consequently increases collagen density in human varicose vein. PLoS One 2014; 9(2): e88021.10.1371/journal.pone.0088021391489824505358Search in Google Scholar

44. Görmüs U, Timirci-Kahraman O, Ergen A et al. Expression levels of elastin and related genes in human varicose veins. Folia Biol (Praha) 2014; 60(2): 68-73.Search in Google Scholar

45. Lim CS, Gohel MS, Shepherd AC et al. Venous hypoxia: a poorly studied etiological factor of varicose veins. J Vasc Res 2011; 48(3): 185-94.10.1159/00032062421099225Search in Google Scholar

46. Tao W, Wei H, Rui X et al. High hydrostatic pressure upon the vasa vasorum of the greater saphenous and splenic vein walls: a comparative study. Int Angiol 2015; 34(6): 568-75.Search in Google Scholar

47. Kachlik D, Baca V, Stingl J et al. Architectonic arrangement of the vasa vasorum of the human great saphenous vein. J Vasc Res 2007; 44(2): 157-66.10.1159/00009914217264517Search in Google Scholar

48. Ghaderian SM, Lindsey NJ, Graham AM et al. Pathogenic mechanisms in varicose vein disease: the role of hypoxia and inflammation. Pathology 2010; 42(5): 446-53.10.3109/00313025.2010.49386520632821Search in Google Scholar

49. Lim CS, Kiriakidis S, Paleolog EM et al. Increased activation of the hypoxia-inducible factor pathway in varicose veins. J Vasc Surg 2012; 55(5): 1427-39.10.1016/j.jvs.2011.10.11122277691Search in Google Scholar

50. Siasos G, Mourouzis K, Oikonomou E et al. The Role of Endothelial Dysfunction in Aortic Aneurysms. Curr Pharm Des 2015; 21(28): 4016-34.10.2174/138161282166615082609415626306838Search in Google Scholar

51. Haviarová Z, Janegová A, Janega P et al. Expression of constitutive nitric oxide synthase isoforms in varicose vein wall; preliminary results. Int J Vasc Med 2011; 2011: 204723.10.1155/2011/204723312483621748016Search in Google Scholar

52. Uzarski JS, Scott EW, McFetridge PS. Adaptation of endothelial cells to physiologically-modeled, variable shear stress. PLoS One 2013; 8(2):e57004.10.1371/journal.pone.0057004357304423457646Search in Google Scholar

53. Blum A, Ginat-Maimon L, Yehuda H et al. Inhibition of inflammation may enhance nitric oxide availability in patients undergoing bariatric surgery for weight loss. J Intern Med 2015; 278(4): 401-9.10.1111/joim.1237926123268Search in Google Scholar

54. Shami SK, Cheatle TR. Fegan’s Compression Sclerotherapy for Varicose Veins. Springer Science & Business Media; 2003.10.1007/978-1-4471-3473-2Search in Google Scholar

55. Kun L, Ying L, Lei W et al. Dysregulated apoptosis of the venous wall in chronic venous disease and portal hypertension. Phlebology 2015 Oct 6. pii: 0268355515610237. [Epub ahead of print]Search in Google Scholar

56. Yongbo X, Wei H, Lei W et al. Changes in levels of apoptosis in the walls of different segments of great saphenous varicose veins. Phlebology 2015 Sep 28. pii: 0268355515605670. [Epub ahead of print]Search in Google Scholar

57. Li H, Han W, Wang L et al. Assessment of apoptotic cells in the wall of thrombophlebitic saphenous vein. Phlebology 2015 Apr 2. pii: 0268355515580474. [Epub ahead of print]Search in Google Scholar

58. Filis K, Kavantzas N, Dalainas I et al. Evaluation of apoptosis in varicose vein disease complicated by superficial vein thrombosis. Vasa 2014; 43(4): 252-9.10.1024/0301-1526/a000360Search in Google Scholar

59. Simovart HE, Arend A, Lieberg J et al. Associations of NF-kappaB and bax with apoptosis in varicose veins of women of different age groups. Int J Vasc Med 2011; 2011: 639720.10.1155/2011/639720Search in Google Scholar

60. Heising S, Giebel J, Ostrowitzki AL et al. Evaluation of apoptotic cells and immunohistochemical detection of FAS, FAS-L, Bcl-2, Bax, p53 and c-Myc in the skin of patients with chronic venous leg ulcers. Int J Mol Med 2008; 22(4): 497-505.Search in Google Scholar

61. Ducasse E, Giannakakis K, Speziale F et al. Association of primary varicose veins with dysregulated vein wall apoptosis. Eur J Vasc Endovasc Surg 2008; 35(2): 224-9.10.1016/j.ejvs.2007.08.015Search in Google Scholar

62. Ducasse E, Giannakakis K, Chevalier J et al. Dysregulated apoptosis in primary varicose veins. Eur J Vasc Endovasc Surg 2005; 29(3): 316-23.10.1016/j.ejvs.2004.12.012Search in Google Scholar

63. Urbanek T, Skop B, Wiaderkiewicz R et al. Smooth muscle cell apoptosis in primary varicose veins. Eur J Vasc Endovasc Surg 2004; 28(6): 600-11.10.1016/j.ejvs.2004.09.008Search in Google Scholar

64. Galkowska H, Olszewsk WL, Wojewodzka U et al. Expression of apoptosis- and cell cycle-related proteins in epidermis of venous leg and diabetic foot ulcers. Surgery 2003; 134(2): 213-20.10.1067/msy.2003.223Search in Google Scholar

65. Zou Y, Qi Y, Roztocil E, Davies MG. Patterns of gelatinase activation induced by injury in the murine femoral artery. J Surg Res 2009; 154(1): 135-42.10.1016/j.jss.2008.05.025Search in Google Scholar

66. Maleskey G, Kittel MS. The hormone connection: revolutionary discoveries linking hormones and women’s health problems. New York: Rodale Press; 2001.Search in Google Scholar

67. Somers P, Knaapen M. Angiology. The histopathology of varicose vein disease. 2006; 57(5): 546-55.Search in Google Scholar

68. Mashiah A, Berman V, Thole HH et al. Estrogen and progesterone receptors in normal and varicose saphenous veins. Cardiovasc Surg 1999; 7(3): 327-31.10.1016/S0967-2109(98)00132-XSearch in Google Scholar

69. Ropacka-Lesiak M, Kasperczak J, Breborowicz GH. [Risk factors for the development of venous insufficiency of the lower limbs during pregnancy—part 1]. Ginekol Pol 2012; 83(12): 939-42.Search in Google Scholar

70. Pokrovski AV, Gradusov EG, Ignat’ev IM et al. [Restoration of valvular function of deep veins in lower-limb varicose disease]. Angiol Sosud Khir 2014; 20(2): 80-9.Search in Google Scholar

eISSN:
1335-8421
Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Cardiology