Open Access

Amplitude-Integrated Electroencephalography: Classification and Possibilities of Use in Practice


Cite

1. Hellstrom-Westas L, Rosen I, de Vries LS, Greisen G. Amplitude-integrated EEG classification and interpretation in preterm and term infants. NeoReviews 2006; 7(2): 76-87.10.1542/neo.7-2-e76Search in Google Scholar

2. Foreman SW, Thorngate L. Amplitude-integrated electroencephalography: A new approach to enhancing neurologic nursing care in the neonatal intensive care unit. NAINR. 2011; 11(3): 134-140.Search in Google Scholar

3. Scher MS, Waisanen H, Loparo K, Johnson MW. Prediction of neonatal state and maturational change using dimensional analysis. J Clin Neurophysiol. 2005;22:159-165.Search in Google Scholar

4. Maynard D, Prior PF, Scott DF. Device for continuous monitoring of cerebral activity in resuscitated patients. Br Med J. 1969; 294: 545-6.10.1136/bmj.4.5682.545-a16303435354856Search in Google Scholar

5. Jasper HH. The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol. 1958; 10: 371-3.Search in Google Scholar

6. Foreman SW, Thorngate L, Burr RL, Thomas KA. Electrode challenges in amplitude-integrated EEG: research application of a novel noninvasive measure of brain function in preterm infants. Biol Res Nurs. 2011, doi:10.1177/1099800411403468.10.1177/109980041140346821498486Search in Google Scholar

7. Tao JD, Mathur AM. Using amplitude-integrated EEG in neonatal intensive care. J Perinatol. 2010; 30: S73-S81.10.1038/jp.2010.9320877412Search in Google Scholar

8. Hellstrom-Westas LRI, de Vries LS, Greisen G. Amplitude-integrated EEG classification and interpretation in preterm and term infants. Neoreviews 2006; 7: e76-e87.10.1542/neo.7-2-e76Search in Google Scholar

9. Hellstrom-Westas L, de Vries L, Rosen I. Atlas of amplitude-integrated EEGs in the newborn. Second Edition. Informa healthcare. 2008; 7-59.10.3109/9781439813898Search in Google Scholar

10. Chakkarapani E, Thoresen M. Use of hypothermia in the asphyxiated nfant. Perinatology. 2010; 3: 20-9.Search in Google Scholar

11. Osredkar D, Toet MC, van Rooij LGM, van Huffelen AC, Groenendaal F, de Vries LS. Sleep-Wake Cycling on Amplitude-Integrated Electroencephalography in Term Newborns With Hypoxic- Ischemic Encephalopathy. Pediatrics 2005; 115(2): 327-332.10.1542/peds.2004-086315687440Search in Google Scholar

12. Klebermass K, Kuhle S, Olischar M, Rucklinger E, Pollak A, Weninger M. Intra- and extrauterine maturation of amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks of gestation. Biol Neonate. 2006; 89: 120-5.10.1159/00008891216219998Search in Google Scholar

13. Kuhle S, Klebermass K, Olischar M, Hulek M, Prusa AR, Kohlhauser C, Birnbacher R, Weninger M. Sleep-wake cycling in preterm infents below 30 weeks of gestational age. Preliminary results of a prospective amplitude-integrated EEG study. Wien Klin Wochenschr. 2001; 113: 219-23.Search in Google Scholar

14. Piecuch RE, Leonard CH, Cooper BA, Sehring SA. Outcome of extremely low birth weight infants (500 to 999 grams) over a 12-year period. Pediatrics 1997; 100: 633-9.10.1542/peds.100.4.6339310517Search in Google Scholar

15. Msall ME, Tremont MR. Measuring functional outcomes after prematurity: Developmental impact of very low birth weight and extremely low birth weight status on childhood disability. Ment Retard Dev Disabil Res Rev. 2002; 8: 258-72.10.1002/mrdd.1004612454902Search in Google Scholar

16. Greenough WT, Black JE, Wallace CS. Experience and brain development. Child Development 1987; 58: 539.10.2307/1130197Search in Google Scholar

17. Black JE. How a child builds its brain: some lessons from animal studies of neural plasticity. Prev Med. 1998; 27: 168-71.10.1006/pmed.1998.02719578989Search in Google Scholar

18. Tolonen M, Palva JM, Andersson S, Vanhatalo S. Development of the spontaneous activity transients and ongoing cortical activity in human preterm babies. Neuroscience. 2007; 145(3): 997- 1006. 10.1016/j.neuroscience.2006.12.07017307296Search in Google Scholar

19. Hayakawa M, Okumura A, Hayakawa F, Watanabe K, Ohshiro M, Kato Y, Takahashi R, Tauchi N. Background electroencephalographic (EEG) activities of very preterm infants born at less than 27 weeks gestation: a study on the degree of continuity. Arch Dis Child Fetal Neonatal Ed. 2001; 84(3): F163-167.10.1136/fn.84.3.F163Search in Google Scholar

20. Andre M, Lamblin MD, d’Allest AM, Curzi-Dascalova L, Moussalli-Salefranque F, S Nguyen The T, Vecchierini-Blineau MF, Wallois F, Walls-Esquivel E, Plouin P. Electroencephalography in premature and full-term infants. Developmental features and glossary. Neurophysiol Clin. May 2010; 40(2): 59-124.Search in Google Scholar

21. Vecchierini MF, Andre M, d’Allest AM. Normal EEG of premature infants born between 24 and 30 weeks gestational age: terminology, definitions and maturation aspects. Neurophysiol Clin. 2007; 37(5): 311-32310.1016/j.neucli.2007.10.00818063233Search in Google Scholar

22. Olischar M, Klebermass K, Kuhle S, Hulek M, Kohlhauser C, Rucklinger E, Pollak A, Weninger M. Reference values for amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks’ gestational age. Pediatrics 2004; 113: e61-e66.10.1542/peds.113.1.e6114702497Search in Google Scholar

23. Klebermass K, Kuhle S, Olischar M, Rucklinger E, Pollak A, Weninger M. Intra- and extrauterine maturation of amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks of gestation. Biol Neonate 2006; 89: 120-5.10.1159/00008891216219998Search in Google Scholar

24. Sisman J, Campbell DE, Brion LP. Amplitude-integrated EEG in preterm infants: maturation of background pattern and amplitude voltage with postmenstrual age and gestational age. J Perinatol 2005; 25: 391-6.10.1038/sj.jp.721129115815708Search in Google Scholar

25. Hayakawaa M. Okumura A, Hayakawa F, Watanabe K, Ohshiro M, Kato Y, Takahashi R, Tauchi N. Background electroencephalographic (EEG) activities of very preterm infants born at less than 27 weeks gestation: a study on the degree of continuity. Arch Dis Child Fetal Neonatal Ed 2001;84:F163-F167 doi:10.1136/fn.84.3.F16310.1136/fn.84.3.F163Search in Google Scholar

26. Seth R.J. et al. Neonatal Seizures. Medscape. 2008. 1.Search in Google Scholar

27. Volpe J. Neurology of the Newborn. 5th ed. Philadelphia: WB Saunders Company. 2008. 1120 p.Search in Google Scholar

28. Baxter P. Epidemiology of pyridoxine dependent and pyridoxine responsive seizures in the UK. Arch Dis Child. 1999; 81: 431-3.10.1136/adc.81.5.431171811810519720Search in Google Scholar

29. Lombroso CT. Neonatal seizures: gaps between the laboratory and the clinic. Epilepsia. 2007; 48 S2: 83-106.10.1111/j.1528-1167.2007.01070.xSearch in Google Scholar

30. Sheth RD. Electroencephalogram confirmatory rate in neonatal seizures. Pediatr Neurol. 1999; 20(1): 27-30.10.1016/S0887-8994(98)00078-2Search in Google Scholar

31. Shah DK, Mackay MT, Lavery S, Watson S, Harvey AS, Zempel J, Mathur A, Inder TE. Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics. 2008; 121: 1146-54.10.1542/peds.2007-183918519484Search in Google Scholar

32. Ito M., Kidokoro H, Sugiyama Y, Sato Y, Natsume J, Watanabe K, Hayakawa M. Paradoxical downward seizure pattern on amplitude-integrated electroencephalogram. J Perinatol 2014; 34: 642-4, doi:10.1038/jp.2013.84.10.1038/jp.2013.8425073496Search in Google Scholar

33. Boylan GB. Principles of EEG. Neonatal Cerebral Investigation. New York: Cambridge University Press. 2008; p. 9-21.10.1017/CBO9780511544750.004Search in Google Scholar

34. Azzopardi D. Predictive value of the amplitude integrated EEG in infants with hypoxic ischaemic encephalopathy: data from a randomised trial of therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed. 2014; 99(1): F80-F82.10.1136/archdischild-2013-303710388863023800393Search in Google Scholar

35. Horn AR. et al. Early clinical signs in neonates with hypoxic ischemic encephalopathy predict an abnormal amplitude-integrated electroencephalogram at age 6 hours. BMC Pediatr. 2013; 13: 52.10.1186/1471-2431-13-52363592823574923Search in Google Scholar

36. Vesoulis ZA. et al. Early Electrographic Seizures, Brain Injury an Neurodevelopmental Risk in the Very Preterm Infant Pediatric Research. 2014; Apr; 75(4): 564-569.10.1038/pr.2013.245396152424366515Search in Google Scholar

eISSN:
1335-8421
Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Cardiology