This work is licensed under the Creative Commons Attribution 4.0 International License.
Allen S., Allen D., Phoenix V.R., Le Roux G., Durántez Jiménez P., Simonneau A., Binet S., Galop D., 2019. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience 12: 339–344. DOI 10.1038/s41561-019-0335-5.AllenS.AllenD.PhoenixV.R.Le RouxG.Durántez JiménezP.SimonneauA.BinetS.GalopD.2019. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience12: 339–344. DOI 10.1038/s41561-019-0335-5.Open DOISearch in Google Scholar
Andrady A.L., Barnes P.W., Bornman J.F., Gouin T., Madronich S., White C.C., Zepp R.G., Jansen M.A.K., 2022. Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. Science of the Total Environment 851: 158022. DOI 10.1016/j.scitotenv.2022.158022.AndradyA.L.BarnesP.W.BornmanJ.F.GouinT.MadronichS.WhiteC.C.ZeppR.G.JansenM.A.K.2022. Oxidation and fragmentation of plastics in a changing environment; from UV-radiation to biological degradation. Science of the Total Environment851: 158022. DOI 10.1016/j.scitotenv.2022.158022.Open DOISearch in Google Scholar
Bellasi A., Binda G., Pozzi A., Galafassi S., Volta P., Bettinetti R., 2020. Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms. Environments 7: 30. DOI 10.3390/environments7040030.BellasiA.BindaG.PozziA.GalafassiS.VoltaP.BettinettiR.2020. Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms. Environments7: 30. DOI 10.3390/environments7040030.Open DOISearch in Google Scholar
Brahney J., Hallerud M., Heim E., Hahnenberger M., Sukumaran S., 2020. Plastic rain in protected areas of the United States. Science 368: 1257–1260. DOI 10.1126/science. aaz5819.BrahneyJ.HallerudM.HeimE.HahnenbergerM.SukumaranS.2020. Plastic rain in protected areas of the United States. Science368: 1257–1260. DOI 10.1126/science. aaz5819.Open DOISearch in Google Scholar
Carpenter E.J., Smith Jr, K., 1972. Plastics on the Sargasso sea surface. Science 175: 1240–1241. DOI 10.1126/science.175.4027.1240.CarpenterE.J.SmithK.1972. Plastics on the Sargasso sea surface. Science175: 1240–1241. DOI 10.1126/science.175.4027.1240.Open DOISearch in Google Scholar
Cole M., Lindeque P., Halsband C., Galloway T.S., 2011. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin 62: 2588–2597. DOI 10.1016/j.marpolbul.2011.09.025.ColeM.LindequeP.HalsbandC.GallowayT.S.2011. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin62: 2588–2597. DOI 10.1016/j.marpolbul.2011.09.025.Open DOISearch in Google Scholar
D’Avignon G., Gregory-Eaves I., Ricciardi A., 2022. Microplastics in lakes and rivers: An issue of emerging significance to limnology. Environmental Reviews 30: 228– 244. DOI 10.1139/er-2021-0048.D’AvignonG.Gregory-EavesI.RicciardiA.2022. Microplastics in lakes and rivers: An issue of emerging significance to limnology. Environmental Reviews30: 228–244. DOI 10.1139/er-2021-0048.Open DOISearch in Google Scholar
Dimante-Deimantovica I., Saarni S., Barone M., Buhhalko N., Stivrins N., Suhareva N., Tylmann W., Vianello A., Vollertsen J., 2024. Downward migrating microplastics in lake sediments are a tricky indicator for the onset of the Anthropocene. Science Advances 10: eadi8136. DOI 10.1126/sciadv.adi8136.Dimante-DeimantovicaI.SaarniS.BaroneM.BuhhalkoN.StivrinsN.SuharevaN.TylmannW.VianelloA.VollertsenJ.2024. Downward migrating microplastics in lake sediments are a tricky indicator for the onset of the Anthropocene. Science Advances10: eadi8136. DOI 10.1126/sciadv.adi8136.Open DOISearch in Google Scholar
Duis K., Coors A., 2016. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe 28: 1–25. DOI 10.1186/s12302-015-0069-y.DuisK.CoorsA.2016. Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe28: 1–25. DOI 10.1186/s12302-015-0069-y.Open DOISearch in Google Scholar
Dusaucy J., Gateuille D., Perrette Y., Naffrechoux E., 2021. Microplastic pollution of worldwide lakes. Environmental Pollution 284: 117075. DOI 10.1016/j.envpol.2021.117075.DusaucyJ.GateuilleD.PerretteY.NaffrechouxE.2021. Microplastic pollution of worldwide lakes. Environmental Pollution284: 117075. DOI 10.1016/j.envpol.2021.117075.Open DOISearch in Google Scholar
Eerkes-Medrano D., Thompson R.C., Aldridge D.C., 2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research 75: 63–82. DOI 10.1016/j.watres.2015.02.012.Eerkes-MedranoD.ThompsonR.C.AldridgeD.C.2015. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research75: 63–82. DOI 10.1016/j.watres.2015.02.012.Open DOISearch in Google Scholar
EEA [European Environment Agency], 1995. Corine Land Cover, Copernicus Land Monitoring Service, European Environment Agency: Copenhagen, Denmark.EEA [European Environment Agency], 1995. Corine Land Cover, Copernicus Land Monitoring Service, European Environment Agency: Copenhagen, Denmark.Search in Google Scholar
Evangeliou N., Grythe H., Klimont Z., Heyes C., Eckhard T.S., Lopez-Aparicio S., Stohl A., 2020. Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications 11: 1–11. DOI 10.1038/s41467-020-17201-9.EvangeliouN.GrytheH.KlimontZ.HeyesC.EckhardT.S.Lopez-AparicioS.StohlA.2020. Atmospheric transport is a major pathway of microplastics to remote regions. Nature Communications11: 1–11. DOI 10.1038/s41467-020-17201-9.Open DOISearch in Google Scholar
Fojutowski M., Gierszewski P., Brykała D., Bonk A., Błaszkiewicz M., Kramkowski M., 2021. Spatio-temporal differences of sediment accumulation rate in the Lake Gościąż (Central Poland) as a response of meteorological conditions and lake basin morphometry. Cuadernos de Investigacion Geografica 47. DOI 10.18172/cig.4724.FojutowskiM.GierszewskiP.BrykałaD.BonkA.BłaszkiewiczM.KramkowskiM.2021. Spatio-temporal differences of sediment accumulation rate in the Lake Gościąż (Central Poland) as a response of meteorological conditions and lake basin morphometry. Cuadernos de Investigacion Geografica47. DOI 10.18172/cig.4724.Open DOISearch in Google Scholar
Gasperi J., Dris R., Mirande-Bret C., Mandin C., Langlois V., Tassin B. 2015. First overview of microplastics in indoor and outdoor air. In: 15th EuCheMS International Conference on Chemistry and the Environment.GasperiJ.DrisR.Mirande-BretC.MandinC.LangloisV.TassinB.2015. First overview of microplastics in indoor and outdoor air. In: 15th EuCheMS International Conference on Chemistry and the Environment.Search in Google Scholar
Gasperi J., Wright S.L., Dris R., Collard F., Mandin C., Guerrouache M., Langlois V., Kelly F.J., Tassin B., 2018. Microplastics in air: Are we breathing it in? Current Opinion in Environ-mental Science, Health 1: 1–5. DOI 10.1016/j.coesh.2017.10.002.GasperiJ.WrightS.L.DrisR.CollardF.MandinC.GuerrouacheM.LangloisV.KellyF.J.TassinB.2018. Microplastics in air: Are we breathing it in?Current Opinion in Environ-mental Science, Health1: 1–5. DOI 10.1016/j.coesh.2017.10.002.Open DOISearch in Google Scholar
González-Pleiter M., Velázquez D., Edo C., Carretero O., Gago J., Barón-Sola Á., Hernández L.E., Yousef I., Quesada A., Leganés F., 2020. Fibers spreading worldwide: Microplastics and other anthropogenic litter in an Arctic freshwater lake. Science of the Total Environment 722: 137904. DOI 10.1016/j.scitotenv.2020.137904.González-PleiterM.VelázquezD.EdoC.CarreteroO.GagoJ.Barón-SolaÁ.HernándezL.E.YousefI.QuesadaA.LeganésF.2020. Fibers spreading worldwide: Microplastics and other anthropogenic litter in an Arctic freshwater lake. Science of the Total Environment722: 137904. DOI 10.1016/j.scitotenv.2020.137904.Open DOISearch in Google Scholar
Gurjar U.R., Xavier M., Nayak B.B., Ramteke K., Deshmukhe G., Jaiswar A.K., Shukla S.P., 2021. Microplastics in shrimps: A study from the trawling grounds of north eastern part of Arabian Sea. Environmental Science and Pollution Research 28: 48494–48504. DOI 10.1007/s11356-021-14121-z.GurjarU.R.XavierM.NayakB.B.RamtekeK.DeshmukheG.JaiswarA.K.ShuklaS.P.2021. Microplastics in shrimps: A study from the trawling grounds of north eastern part of Arabian Sea. Environmental Science and Pollution Research28: 48494–48504. DOI 10.1007/s11356-021-14121-z.Open DOISearch in Google Scholar
Harley-Nyang D., Memon F.A., Osorio Baquero A., Galloway T., 2023. Variation in microplastic concentration, characteristics and distribution in sewage sludge & biosolids around the world. Science of the Total Environment 891: 164068. DOI 10.1016/j.scitotenv.2023.164068.Harley-NyangD.MemonF.A.Osorio BaqueroA.GallowayT.2023. Variation in microplastic concentration, characteristics and distribution in sewage sludge & biosolids around the world. Science of the Total Environment891: 164068. DOI 10.1016/j.scitotenv.2023.164068.Open DOISearch in Google Scholar
Hartmann N.B., Huffer T., Thompson R.C., Hassellov M., Verschoor A., Daugaard A.E., Rist S., Karlsson T., Brennholt N., Cole M., 2019. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. ACS Publications. DOI 10.1021/acs. est.8b05297.HartmannN.B.HufferT.ThompsonR.C.HassellovM.VerschoorA.DaugaardA.E.RistS.KarlssonT.BrennholtN.ColeM.2019. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. ACS Publications. DOI 10.1021/acs. est.8b05297.Open DOISearch in Google Scholar
Hernandez L.M., Xu E.G., Larsson H.C., Tahara R., Maisuria V.B., Tufenkji N., 2019. Plastic teabags release billions of microparticles and nanoparticles into tea. Environmental Science & Technology 53: 12300–12310. DOI 10.1021/acs. est.9b02540.HernandezL.M.XuE.G.LarssonH.C.TaharaR.MaisuriaV.B.TufenkjiN.2019. Plastic teabags release billions of microparticles and nanoparticles into tea. Environmental Science & Technology53: 12300–12310. DOI 10.1021/acs. est.9b02540.Open DOISearch in Google Scholar
Hidalgo-Ruz V., Gutow L., Thompson R.C., Thiel M., 2012. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science & Technology 46: 3060–3075. DOI 10.1021/es2031505.Hidalgo-RuzV.GutowL.ThompsonR.C.ThielM.2012. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science & Technology46: 3060–3075. DOI 10.1021/es2031505.Open DOISearch in Google Scholar
Horton A.A., Walton A., Spurgeon D.J., Lahive E., Svendsen C., 2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment 586: 127–141. DOI 10.1016/j.scitotenv.2017.01.190.HortonA.A.WaltonA.SpurgeonD.J.LahiveE.SvendsenC.2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment586: 127–141. DOI 10.1016/j.scitotenv.2017.01.190.Open DOISearch in Google Scholar
Huang Y., He T., Yan M., Yang L., Gong H., Wang W., Qing X., Wang J., 2021. Atmospheric transport and deposition of microplastics in a subtropical urban environment. Journal of Hazardous Materials 416: 126168. DOI 10.1016/j. hazmat.2021.126168.HuangY.HeT.YanM.YangL.GongH.WangW.QingX.WangJ.2021. Atmospheric transport and deposition of microplastics in a subtropical urban environment. Journal of Hazardous Materials416: 126168. DOI 10.1016/j. hazmat.2021.126168.Open DOISearch in Google Scholar
Iroegbu A.O.C., Ray S.S., Mbarane V., Bordado J.C., Sardinha J.P., 2021. Plastic pollution: A perspective on matters arising: Challenges and opportunities. ACS Omega 6: 19343–19355. DOI 10.1021/acsomega.1c02760.IroegbuA.O.C.RayS.S.MbaraneV.BordadoJ.C.SardinhaJ.P.2021. Plastic pollution: A perspective on matters arising: Challenges and opportunities. ACS Omega6: 19343–19355. DOI 10.1021/acsomega.1c02760.Open DOISearch in Google Scholar
Ivleva N.P., 2021. Chemical analysis of microplastics and nanoplastics: Challenges, advanced methods, and perspectives. Chemical Reviews 121: 11886–11936. DOI 10.1021/acs.chemrev.1c00178.IvlevaN.P.2021. Chemical analysis of microplastics and nanoplastics: Challenges, advanced methods, and perspectives. Chemical Reviews121: 11886–11936. DOI 10.1021/acs.chemrev.1c00178.Open DOISearch in Google Scholar
Jenner L.C., Rotchell J.M., Bennett R.T., Cowen M., Tentzeris V., Sadofsky L.R., 2022. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Science of the Total Environment 831: 154907. DOI 10.1016/j.scitotenv.2022.154907.JennerL.C.RotchellJ.M.BennettR.T.CowenM.TentzerisV.SadofskyL.R.2022. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Science of the Total Environment831: 154907. DOI 10.1016/j.scitotenv.2022.154907.Open DOISearch in Google Scholar
Kaliszewicz A., Winczek M., Karaban K., Kurzydłowski D., Górska M., Koselak W., Romanowski J., 2020. The contamination of inland waters by microplastic fibres under different anthropogenic pressure: Preliminary study in Central Europe (Poland). Waste Management & Research 38: 1231–1238. DOI 10.1177/0734242X20938448.KaliszewiczA.WinczekM.KarabanK.KurzydłowskiD.GórskaM.KoselakW.RomanowskiJ.2020. The contamination of inland waters by microplastic fibres under different anthropogenic pressure: Preliminary study in Central Europe (Poland). Waste Management & Research38: 1231–1238. DOI 10.1177/0734242X20938448.Open DOISearch in Google Scholar
Karpowicz M., Sługocki Ł., Kozłowska J., Ochocka A., López C., 2020. Body size of Daphnia cucullata as an indicator of the ecological status of temperate lakes. Ecological Indicators 117: 106585. DOI 10.1016/j.ecolind.2020.106585.KarpowiczM.SługockiŁ.KozłowskaJ.OchockaA.LópezC.2020. Body size of Daphnia cucullata as an indicator of the ecological status of temperate lakes. Ecological Indicators117: 106585. DOI 10.1016/j.ecolind.2020.106585.Open DOISearch in Google Scholar
Kępczyński K., Noryśkiewicz A., 1998. Vegetation of the Gostynińskie Lake District. Lake Gościąż, Central Poland: A Monographic Study, Part 1: 29–33.KępczyńskiK.NoryśkiewiczA.1998. Vegetation of the Gostynińskie Lake District. Lake Gościąż, Central Poland: A Monographic Study, Part1: 29–33.Search in Google Scholar
Klein S., Worch E., Knepper T.P., 2015. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environmental Science & Technology 49: 6070–6076. DOI 10.1021/acs.est.5b00492.KleinS.WorchE.KnepperT.P.2015. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany. Environmental Science & Technology49: 6070–6076. DOI 10.1021/acs.est.5b00492.Open DOISearch in Google Scholar
Kochanowski J., 2017. Rewolucja międzypaździernikowa: Polska 1956-1957, Wydawnictwo Znak Horyzont.KochanowskiJ.2017. Rewolucja międzypaździernikowa: Polska 1956-1957, Wydawnictwo Znak Horyzont.Search in Google Scholar
Kordowski J., Błaszkiewicz M., Kramkowski M., Słowiński M., Tyszkowski S., Brauer A., Brykała D., Gierszewski P., Lamparski P., Lutyńska M., Mirosław-Grabowska J., Noryśkiewicz A.M., Obremska M., Ott F., Wulf S., Zawiska I., 2014. Charakterystyka środowisk depozycyjnych Jeziora Czechowskiego i jego otoczenia. Landform Analysis 25: 55–75. DOI 10.12657/landfana.025.006.KordowskiJ.BłaszkiewiczM.KramkowskiM.SłowińskiM.TyszkowskiS.BrauerA.BrykałaD.GierszewskiP.LamparskiP.LutyńskaM.Mirosław-GrabowskaJ.NoryśkiewiczA.M.ObremskaM.OttF.WulfS.ZawiskaI.2014. Charakterystyka środowisk depozycyjnych Jeziora Czechowskiego i jego otoczenia. Landform Analysis25: 55–75. DOI 10.12657/landfana.025.006.Open DOISearch in Google Scholar
Kvale K., Prowe A.E.F., Chien C.T., Landolfi A., Oschlies A., 2021. Zooplankton grazing of microplastic can accelerate global loss of ocean oxygen. Nature Communication 12: 2358. DOI 10.1038/s41467-021-22554-w.KvaleK.ProweA.E.F.ChienC.T.LandolfiA.OschliesA.2021. Zooplankton grazing of microplastic can accelerate global loss of ocean oxygen. Nature Communication12: 2358. DOI 10.1038/s41467-021-22554-w.Open DOISearch in Google Scholar
Leslie H.A., Van Velzen M.J., Brandsma S.H., Vethaak A.D., Garcia-Vallejo J.J., Lamoree M.H., 2022. Discovery and quantification of plastic particle pollution in human blood. Environment International 163: 107199. DOI 10.1016/j.envint.2022.107199.LeslieH.A.Van VelzenM.J.BrandsmaS.H.VethaakA.D.Garcia-VallejoJ.J.LamoreeM.H.2022. Discovery and quantification of plastic particle pollution in human blood. Environment International163: 107199. DOI 10.1016/j.envint.2022.107199.Open DOISearch in Google Scholar
Marosz M., 2016. Variability of geostrophic airflow over Poland, 1951-2014. Bulletin of Geography. Physical Geography Series 10: 5–18. DOI 10.1515/bgeo-2016-0001.MaroszM.2016. Variability of geostrophic airflow over Poland, 1951-2014. Bulletin of Geography. Physical Geography Series10: 5–18. DOI 10.1515/bgeo-2016-0001.Open DOISearch in Google Scholar
Martí E., Martin C., Galli M., Echevarría F., Duarte C.M., Cózar A., 2020. The colors of the ocean plastics. Environmental Science & Technology 54: 6594–6601. DOI 10.1021/acs.est.9b06400.MartíE.MartinC.GalliM.EchevarríaF.DuarteC.M.CózarA.2020. The colors of the ocean plastics. Environmental Science & Technology54: 6594–6601. DOI 10.1021/acs.est.9b06400.Open DOISearch in Google Scholar
Mintenig S.M., Int-Veen I., Löder M.G., Primpke S., Gerdts G., 2017. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-fourier-transform infrared imaging. Water Research 108: 365–372. DOI 10.1016/j.watres.2016.11.015.MintenigS.M.Int-VeenI.LöderM.G.PrimpkeS.GerdtsG.2017. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-fourier-transform infrared imaging. Water Research108: 365–372. DOI 10.1016/j.watres.2016.11.015.Open DOISearch in Google Scholar
Nava V., Chandra S., Aherne J., Alfonso M.B., Antao-Geraldes A.M., Attermeyer K., Bao R., Bartrons M., Berger S.A., Biernaczyk M., Bissen R., Brookes J.D., Brown D., Canedo-Arguelles M., Canle M., Capelli C., Carballeira R., Cereijo J.L., Chawchai S., Christensen S.T., Christoffersen K.S., De Eyto E., Delgado J., Dornan T.N., Doubek J.P., Dusaucy J., Erina O., Ersoy Z., Feuchtmayr H., Frezzotti M.L., Galafassi S., Gateuille D., Goncalves V., Grossart H.P., Hamilton D.P., Harris T.D., Kangur K., Kankilic G.B., Kessler R., Kiel C., Krynak E.M., Leiva-Presa A., Lepori F., Matias M.G., Matsuzaki S.S., Mcelarney Y., Messyasz B., Mitchell M., Mlambo M.C., Motitsoe S.N., Nandini S., Orlandi V., Owens C., Ozkundakci D., Pinnow S., Pociecha A., Raposeiro P.M., Room E.I., Rotta F., Salmaso N., Sarma S.S.S., Sartirana D., Scordo F., Sibomana C., Siewert D., Stepanowska K., Tavsanoglu U.N., Tereshina M., Thompson J., Tolotti M., Valois A., Verburg P., Welsh B., Wesolek B., Weyhenmeyer G.A., Wu N., Zawisza E., Zink L., Leoni B., 2023. Plastic debris in lakes and reservoirs. Nature 619: 317–322. DOI 10.1038/s41586-023-06168-4.NavaV.ChandraS.AherneJ.AlfonsoM.B.Antao-GeraldesA.M.AttermeyerK.BaoR.BartronsM.BergerS.A.BiernaczykM.BissenR.BrookesJ.D.BrownD.Canedo-ArguellesM.CanleM.CapelliC.CarballeiraR.CereijoJ.L.ChawchaiS.ChristensenS.T.ChristoffersenK.S.De EytoE.DelgadoJ.DornanT.N.DoubekJ.P.DusaucyJ.ErinaO.ErsoyZ.FeuchtmayrH.FrezzottiM.L.GalafassiS.GateuilleD.GoncalvesV.GrossartH.P.HamiltonD.P.HarrisT.D.KangurK.KankilicG.B.KesslerR.KielC.KrynakE.M.Leiva-PresaA.LeporiF.MatiasM.G.MatsuzakiS.S.McelarneyY.MessyaszB.MitchellM.MlamboM.C.MotitsoeS.N.NandiniS.OrlandiV.OwensC.OzkundakciD.PinnowS.PociechaA.RaposeiroP.M.RoomE.I.RottaF.SalmasoN.SarmaS.S.S.SartiranaD.ScordoF.SibomanaC.SiewertD.StepanowskaK.TavsanogluU.N.TereshinaM.ThompsonJ.TolottiM.ValoisA.VerburgP.WelshB.WesolekB.WeyhenmeyerG.A.WuN.ZawiszaE.ZinkL.LeoniB.2023. Plastic debris in lakes and reservoirs. Nature619: 317–322. DOI 10.1038/s41586-023-06168-4.Open DOISearch in Google Scholar
Negrete Velasco A.D.J., Rard L., Blois W., Lebrun D., Lebrun F., Pothe F., Stoll S., 2020. Microplastic and fibre contamination in a remote mountain lake in Switzerland. Water 12: 2410. DOI 10.3390/w12092410.Negrete VelascoA.D.J.RardL.BloisW.LebrunD.LebrunF.PotheF.StollS.2020. Microplastic and fibre contamination in a remote mountain lake in Switzerland. Water12: 2410. DOI 10.3390/w12092410.Open DOISearch in Google Scholar
PlasticsEurope. 2021. Plastics – the Facts. Online: https://plasticseurope.org/wp-content/uploads/2021/12/Plastics-the-Facts-2021-web-final.pdf (acessed 12 January 2024).PlasticsEurope. 2021. Plastics – the Facts. Online: https://plasticseurope.org/wp-content/uploads/2021/12/Plastics-the-Facts-2021-web-final.pdf (acessed 12 January 2024).Search in Google Scholar
Pol W., Stasinska E., Zmijewska A., Wiecko A., Zielinski P., 2023. Litter per liter – Lakes’ morphology and shoreline urbanization index as factors of microplastic pollution: Study of 30 lakes in NE Poland. Science of the Total Environment 881: 163426. DOI 10.1016/j.scitotenv.2023.163426.PolW.StasinskaE.ZmijewskaA.WieckoA.ZielinskiP.2023. Litter per liter – Lakes’ morphology and shoreline urbanization index as factors of microplastic pollution: Study of 30 lakes in NE Poland. Science of the Total Environment881: 163426. DOI 10.1016/j.scitotenv.2023.163426.Open DOISearch in Google Scholar
Rogowska W., Skorbiłowicz E., Skorbiłowicz M., Trybułowski Ł., 2021. Microplastics in coastal sediments of Ełckie Lake (Poland). Studia Quaternaria 38: 109–116.RogowskaW.SkorbiłowiczE.SkorbiłowiczM.TrybułowskiŁ.2021. Microplastics in coastal sediments of Ełckie Lake (Poland). Studia Quaternaria38: 109–116.Search in Google Scholar
Santillán L., Saldaña-Serrano M., De-La-Torre G.E., 2020. First record of microplastics in the endangered marine otter (Lontra felina). Mastozoología neotropical 27: 211–215. DOI 10.31687/saremMN.20.27.1.0.12.SantillánL.Saldaña-SerranoM.De-La-TorreG.E.2020. First record of microplastics in the endangered marine otter (Lontra felina). Mastozoología neotropical27: 211–215. DOI 10.31687/saremMN.20.27.1.0.12.Open DOISearch in Google Scholar
Sekellick A.J., Banks W.S., Myers M.K., 2013. Water volume and sediment volume and density in lake linganore between boyers mill road bridge and bens branch, frederick county, Maryland, 2012. US Department of the Interior, US Geological Survey.SekellickA.J.BanksW.S.MyersM.K.2013. Water volume and sediment volume and density in lake linganore between boyers mill road bridge and bens branch, frederick county, Maryland, 2012. US Department of the Interior, US Geological Survey.Search in Google Scholar
Sobhani Z., Lei Y., Tang Y., Wu L., Zhang X., Naidu R., Megharaj M., Fang C., 2020. Microplastics generated when opening plastic packaging. Scientific Reports 10: 1–7. DOI 10.1038/s41598-020-61146-4.SobhaniZ.LeiY.TangY.WuL.ZhangX.NaiduR.MegharajM.FangC.2020. Microplastics generated when opening plastic packaging. Scientific Reports10: 1–7. DOI 10.1038/s41598-020-61146-4.Open DOISearch in Google Scholar
Sowiński P., Smólczyński S., Kalisz B., Orzechowski M., Bieniek A., 2023. Variability of some physical properties of Limnic Rendzinas in the Mazurian Lakeland (NE Poland). Polish Journal of Soil Science 56: 1–10. DOI 10.17951/pjss/2023.56.1.1.SowińskiP.SmólczyńskiS.KaliszB.OrzechowskiM.BieniekA.2023. Variability of some physical properties of Limnic Rendzinas in the Mazurian Lakeland (NE Poland). Polish Journal of Soil Science56: 1–10. DOI 10.17951/pjss/2023.56.1.1.Open DOISearch in Google Scholar
Sripada K., Wierzbicka A., Abass K., Grimalt J.O., Erbe A., Röllin H.B., Weihe P., Díaz G.J., Singh R.R., Visnes T., 2022. A children’s health perspective on nano-and microplastics. Environmental Health Perspectives 130: 015001. DOI 10.1289/EHP9086.SripadaK.WierzbickaA.AbassK.GrimaltJ.O.ErbeA.RöllinH.B.WeiheP.DíazG.J.SinghR.R.VisnesT.2022. A children’s health perspective on nano-and microplastics. Environmental Health Perspectives130: 015001. DOI 10.1289/EHP9086.Open DOISearch in Google Scholar
Talbot R., Chang H., 2022. Microplastics in freshwater: A global review of factors affecting spatial and temporal variations. Environmental Pollution 292: 118393. DOI 10.1016/j.envpol.2021.118393.TalbotR.ChangH.2022. Microplastics in freshwater: A global review of factors affecting spatial and temporal variations. Environmental Pollution292: 118393. DOI 10.1016/j.envpol.2021.118393.Open DOISearch in Google Scholar
Vaughan R., Turner S.D., Rose N.L., 2017. Microplastics in the sediments of a UK urban lake. Environmental Pollution 229: 10–18. DOI 10.1016/j.envpol.2017.05.057.VaughanR.TurnerS.D.RoseN.L.2017. Microplastics in the sediments of a UK urban lake. Environmental Pollution229: 10–18. DOI 10.1016/j.envpol.2017.05.057.Open DOISearch in Google Scholar
Weinstein J.E., Crocker B.K., Gray A.D., 2016. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environmental Toxicology and Chemistry 35: 1632–40. DOI 10.1002/etc.3432.WeinsteinJ.E.CrockerB.K.GrayA.D.2016. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environmental Toxicology and Chemistry35: 1632–40. DOI 10.1002/etc.3432.Open DOISearch in Google Scholar
Welle F., Franz R., 2018. Microplastic in bottled natural mineral water–literature review and considerations on exposure and risk assessment. Food Additives & Contaminants: Part A 35: 2482–2492. DOI 10.1080/19440049.2018.1543957.WelleF.FranzR.2018. Microplastic in bottled natural mineral water–literature review and considerations on exposure and risk assessment. Food Additives & Contaminants: Part A35: 2482–2492. DOI 10.1080/19440049.2018.1543957.Open DOISearch in Google Scholar
Xiong X., Zhang K., Chen X., Shi H., Luo Z., Wu C., 2018. Sources and distribution of microplastics in China’s largest inland lake–Qinghai Lake. Environmental Pollution 235: 899–906. DOI 10.1016/j.envpol.2017.12.081.XiongX.ZhangK.ChenX.ShiH.LuoZ.WuC.2018. Sources and distribution of microplastics in China’s largest inland lake–Qinghai Lake. Environmental Pollution235: 899–906. DOI 10.1016/j.envpol.2017.12.081.Open DOISearch in Google Scholar
Yang S., Zhou M., Chen X., Hu L., Xu Y., Fu W., Li C., 2022. A comparative review of microplastics in lake systems from different countries and regions. Chemosphere 286: 131806. DOI 10.1016/j.chemosphere.2021.131806.YangS.ZhouM.ChenX.HuL.XuY.FuW.LiC.2022. A comparative review of microplastics in lake systems from different countries and regions. Chemosphere286: 131806. DOI 10.1016/j.chemosphere.2021.131806.Open DOISearch in Google Scholar
Zbyszewski M., Corcoran P.L., 2011. Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water, Air, & Soil Pollution 220: 365–372. DOI 10.1007/s11270-011-0760-6.ZbyszewskiM.CorcoranP.L.2011. Distribution and degradation of fresh water plastic particles along the beaches of Lake Huron, Canada. Water, Air, & Soil Pollution220: 365–372. DOI 10.1007/s11270-011-0760-6.Open DOISearch in Google Scholar