# Volume 41 (2019): Edizione 2 (June 2019)

Dettagli della rivista
Formato
Rivista
eISSN
2083-831X
Pubblicato per la prima volta
09 Nov 2012
Periodo di pubblicazione
4 volte all'anno
Lingue
Inglese

0 Articoli

Accesso libero

#### Axisymmetric Torsion of an Elastic Layer Sandwiched between Two Elastic Half-Spaces with Two Interfaced Cracks

Pubblicato online: 28 Jun 2019
Pagine: 57 - 66

#### Astratto

The present article examines the problem related to the axisymmetric torsion of an elastic layer by a circular rigid disc at the symmetry plane. The layer is sandwiched between two similar elastic half-spaces with two penny-shaped cracks symmetrically located at the interfaces between the two bonded dissimilar media. The mixed boundary-value problem is transformed, by means of the Hankel integral transformation, to dual integral equations, that are reduced, to a Fredholm integral equation of the second kind. The numerical methods are used to convert the resulting system to a system of infinite algebraic equations. Some physical quantities such as the stress intensity factor and the moment are calculated and presented numerically according to some relevant parameters. The numerical results show that the discontinuities around the crack and the inclusion cause a large increase in the stresses that decay with distance from the disc-loaded. Furthermore, the dependence of the stress intensity factor on the disc size, the distance between the crack and the disc, and the shear parameter is also observerd.

#### Parole chiave

• Axisymmetric torsion
• Penny-shaped crack
• Dual integral equations
• Fredholm integral equations
Accesso libero

#### Effects of Surrounding Earth on Shell During the Construction of Flexible Bridge Structures

Pubblicato online: 28 Jun 2019
Pagine: 67 - 73

#### Astratto

A characteristic feature of soil-steel structures is that, unlike in typical bridges, the backfill and the carriageway pavement with its foundation play a major role in bearing loads. In the soil-steel structure model, one can distinguish two structural subsystems: the shell made of corrugated plates and the backfill with the pavement layers. The interactions between the subsystems are modelled as interfacial interactions, that is, forces normal and tangent to the surface of the shell. This is a static condition of the consistency of mutual interactions between the surrounding earth and the shell, considering that slip can arise at the interface between the subsystems. This paper presents an algorithm for determining the internal forces in the shell on the basis of the unit strains in the corrugated plates, and subsequently, the interfacial interactions. The effects of loads arising during the construction of a soil-steel bridge when, for example, construction machines drive over the structure, are taken into account in the analysis of the internal forces in the shell and in the surrounding earth. During construction, the forces in the shell are usually many times greater than the ones generated by service loads. Thus, the analytical results presented in this paper provide the basis for predicting the behaviour of the soil medium under operational loads.

#### Parole chiave

• Soil-steel structures
• effects of surrounding earth on shell
• construction phase
Accesso libero

#### Strength and Deformation of Sand-Tire Rubber Mixtures (STRM): An Experimental Study

Pubblicato online: 28 Jun 2019
Pagine: 74 - 80

#### Astratto

Waste material such as used tires is increasing every year, which poses environmental problems. However, such material has been used in several geotechnical applications as alternative lightweight backfill in highway embankments and/or behind retaining walls, providing environmental, economic and technical benefits. These applications require knowledge of engineering properties of soil-tire rubber mixtures. The present study aims to show the possibility of tire rubber usage in sand by evaluating the shear strength and deformability of sand mixed with granulated rubber, in weight percentages between 0 and 50%. The tire rubber content was found to influence the stress-strain and deformation behavior of the mixtures. The shear strength of sand mixed with 10% or 20% tire rubber was higher than that measured for sand only. However, the trend for TRC = 30–50% was different. Samples with a rubber content of 30-50% exhibited a rapid decrease in the stress ratio compared with that of sand. The major principal strain at maximum stress ratio was found to increase with increasing tire rubber content. However, it was observed that the lateral strains (minor and intermediate principal strains) of samples reduced significantly with the addition of tire rubber to the sand.

#### Parole chiave

• Tire rubber
• shear strength
• deformation
• major
• minor and intermediate principal strains
Accesso libero

#### Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation

Pubblicato online: 28 Jun 2019
Pagine: 81 - 92

#### Astratto

At present, the suspended monorail systems constitute a very common means of transportation in the Polish hard coal mines. The main advantages of the suspended monorail include the independence of the route from the working floor surface irregularities and the possibility to transport cargo of significant mass and size.

The masses and dimensions of machines and devices transported via monorail have increased considerably in recent times. This particularly concerns the transport of longwall system elements. In Poland, the maximum speed of suspended monorail travel is 2 m/s. Due to the fact that preparations are currently underway to increase the maximum speed above 2 m/s, it is necessary to inspect what influence it will have on work safety and mining support stability.

Current operational experience and tests have shown that dynamic loads induced by the suspended monorail transportation have a significant influence on the roadway support stability, working protection durability and on the monorail operators. This is particularly true during the emergency braking of a suspended monorail by means of a braking trolley, where the overloads reach 3g.

Bench tests of the selected steel arch and rock bolt support elements utilised in the Polish hard coal mines were conducted in order to determine the resistance of steel arch and rock bolt supports to static and dynamic loads.

The article presents the results of the tests conducted on a steel arch support in the form of the sliding joints of an ŁP/V29 yielding roadway support, which is commonly employed in the Polish hard coal mines. Tests of elements of the threaded bolts with trapezoidal threads over the entire rod length were conducted as well.

The conducted strength tests of steel arch and rock bolt support elements under static and dynamic loading have shown that dynamic loading has decisive influence on the support’s retaining of its stability. Support element stability decreases along with the increase of the impact velocity. This concerns both the steel arch support and the rock bolt support.

#### Parole chiave

• Mine transport
• suspended monorail
• steel arch and rock bolt support resistance
Accesso libero

#### Fast, non-destructive measurement of roof-bolt loads

Pubblicato online: 28 Jun 2019
Pagine: 93 - 101

#### Astratto

This paper discusses the pull-out laboratory tests and the monitoring of expansion-shell bolts with a length of 1.82 m. The bolts comprised the KE-3W expansion shell, a rod with a diameter of 0.0183 m and a profiled, circular plate with a diameter of 0.14 m, and a gauge of 0.006 m. The bolts were installed in a concrete block with a compressive strength of 75 MPa. The tests were conducted on a state-of-the-art test stand owned by the Department of Underground Mining of the AGH University of Science and Technology. The test stand can be used to test roof bolts on a geometric scale of 1:1 under static and rapidly varying loads. Also, the stand is suitable for testing rods measuring 5.5 m in length. The stand has a special feature of providing the ongoing monitoring of bolt load, displacement and deformation. The primary aim of the study was to compare the results recorded by two different measurement systems with the innovative Self-Excited Acoustic System (SAS) for measuring stress variations in roof bolts. In order to use the SAS, a special handle equipped with an accelerometer and exciter mounted to the nut or the upset end of the rod was designed at the Faculties of Mining and Geoengineering and Mechanical Engineering and Robotics of the AGH University of Science and Technology. The SAS can be used for nondestructive evaluation of performance of bolts around mining workings and in tunnels. Through laboratory calibration tests, roof bolt loads can be assessed using the in-situ non-destructive method.

#### Parole chiave

• Expansion-shell bolt
• monitoring
• nondestructive method
• laboratory tests
Accesso libero

#### Effect of Tunnel Progress on the Settlement of Existing Piled Foundation

Pubblicato online: 28 Jun 2019
Pagine: 102 - 113

#### Astratto

Tunnel construction below or adjacent to piles will affect the performance and eventually the stability of piles due to ground deformation resulting in the movement of piles and changes in the axial force distribution along the piles. A three dimensional finite element analysis using PLAXIS 3D (2013) was performed to study the behaviour of a single pile and 3 x 3 piles group during the advancement of shield tunnelling in ground. The 10-node tetrahedral elements were used to model both the soil and the tunnel lining. The Hardening Soil (HS) model was used to simulate the soil structure interaction at the tunnel-soil interface. An isotropic elastic model was used for the pile, piles cap, tunnel lining and tunnel boring machine shield (TBM). Several parametric studies were attempted including the longitudinal, lateral, and vertical tunnel location relative to pile embedded in different types of soil (clay or sand). The results showed that the pile head settlement increases during the tunnelling advancement in larger values than that for ground surface settlement. A zone of influence was determined in the range of twice the tunnel diameter in the longitudinal direction (forward and backward of the pile), and transverse direction (left and right of the tunnel centreline). If the tunnel boring is kept off this zone then there is no fear of pile collapse.

#### Parole chiave

• Numerical modelling and analysis
• piles
• soil-structure interaction
• tunnelling