Accesso libero

Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical analysis and measurements

INFORMAZIONI SU QUESTO ARTICOLO

Cita

M. Egawa, H. Tagami. Comparison of the depth profiles of water and water-binding substances in the stratum corneum determined in vivo by raman spectroscopy between the cheek and volar forearm skin: effects of age, seasonal changes and artificial forced hydration. Br J Dermatol. 2008;158:251-260. http://dx.doi.org/10.1111/j.1365-2133.2007.08311.x18047517EgawaM.TagamiH.Comparison of the depth profiles of water and water-binding substances in the stratum corneum determined in vivo by raman spectroscopy between the cheek and volar forearm skin: effects of age, seasonal changes and artificial forced hydrationBr J Dermatol2008158251260http://dx.doi.org/10.1111/j.1365-2133.2007.08311.x10.1111/j.1365-2133.2007.08311.x18047517Search in Google Scholar

J. M. Crowther, A. Sieg, P. Blenkiron, C. Marcott, P. J. Matts, J. R. Kaczvinsky, A. V. Rawlings. Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Br J Dermatol. 2008;159:567–577. http://dx.doi.org/10.1111/j.1365-2133.2008.08703.x18616783CrowtherJ. M.SiegA.BlenkironP.MarcottC.MattsP. J.KaczvinskyJ. R.RawlingsA. V.Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivoBr J Dermatol2008159567577http://dx.doi.org/10.1111/j.1365-2133.2008.08703.xSearch in Google Scholar

M. Huzaira, F. Rius, M. Rajadhyaksha, R. R. Anderson, S. Gonzáles. Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopy. J Invest Dermatol. 2001;116:846-852. http://dx.doi.org/10.1046/j.0022-202x.2001.01337.x10.1046/j.0022-202x.2001.01337.x11407970HuzairaM.RiusF.RajadhyakshaM.AndersonR. R.GonzálesS.Topographic variations in normal skin, as viewed by in vivo reflectance confocal microscopyJ Invest Dermatol2001116846852http://dx.doi.org/10.1046/j.0022-202x.2001.01337.x11407970Open DOISearch in Google Scholar

T. L. Moore, M. Lunt, B. McManus, M. E. Anderson, A. L. Herrick. Seventeen-point dermal ultrasound scoring system-a reliable measure of skin thickness in patients with systemic sclerosis. Rheumatology 2003;42:1559-1563. http://dx.doi.org/10.1093/rheumatology/keg43510.1093/rheumatology/keg43512867579MooreT. L.LuntM.McManusB.AndersonM. E.HerrickA. L.Seventeen-point dermal ultrasound scoring system-a reliable measure of skin thickness in patients with systemic sclerosisRheumatology20034215591563http://dx.doi.org/10.1093/rheumatology/keg43512867579Open DOISearch in Google Scholar

J. Sandby-Moller, T. Poulsen, H. C. Wulf. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol. 2003;83:410-413. http://dx.doi.org/10.1080/000155503100154191469033310.1080/00015550310015419Sandby-MollerJ.PoulsenT.WulfH. C.Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habitsActa Derm Venereol200383410413http://dx.doi.org/10.1080/0001555031001541914690333Search in Google Scholar

K. Holbrook, G. Odland. Regional differences in the thickness (cell layers) of the human stratum corneum: An ultrastructral analysis. J Invest Dermatol. 1974;62:415-422. http://dx.doi.org/10.1111/1523-1747.ep1270167010.1111/1523-1747.ep12701670HolbrookK.OdlandG.Regional differences in the thickness (cell layers) of the human stratum corneum: An ultrastructral analysisJ Invest Dermatol197462415422http://dx.doi.org/10.1111/1523-1747.ep127016704820685Open DOISearch in Google Scholar

D. A. Schwindt, K. P. Wilhelm, H. I. Maibach. Water diffusion characteristics of human stratum corneum at different anatomical sites in vivo. J Invest Dermatol. 1998;111:385-389. http://dx.doi.org/10.1046/j.1523-1747.1998.00321.x974022810.1046/j.1523-1747.1998.00321.xSchwindtD. A.WilhelmK. P.MaibachH. I.Water diffusion characteristics of human stratum corneum at different anatomical sites in vivoJ Invest Dermatol1998111385389http://dx.doi.org/10.1046/j.1523-1747.1998.00321.x9740228Search in Google Scholar

U. Birgersson, E. Birgersson, P. Åberg, I. Nicander, S. Ollmar. Non-invasive bioimpedance of intact skin: mathematical modeling and experiments. Physiol. Meas. 2011;32:1-18. http://dx.doi.org/10.1088/0967-3334/32/1/0012109891110.1088/0967-3334/32/1/001BirgerssonU.BirgerssonE.ÅbergP.NicanderI.OllmarS.Non-invasive bioimpedance of intact skin: mathematical modeling and experimentsPhysiol. Meas201132118http://dx.doi.org/10.1088/0967-3334/32/1/00121098911Search in Google Scholar

Walker DC, Brown B H, Smallwood R H, Hose DR, Jones D M. Modelled current distribution in cervical squamous. Physiol. Meas. 2002;23:159-68. http://dx.doi.org/10.1088/0967-3334/23/1/3151187622910.1088/0967-3334/23/1/315WalkerDCBrownB HSmallwoodR HHoseDRJonesD MModelled current distribution in cervical squamousPhysiol. Meas20022315968http://dx.doi.org/10.1088/0967-3334/23/1/31511876229Search in Google Scholar

Jones D M, Smallwood R H, Hose DR, Brown B H, Walker D C. Modelling of epithelial tissue impedance measured using three different design of probe. Physiol. Meas. 2003;24:60523. http://dx.doi.org/10.1088/0967-3334/24/2/369JonesD MSmallwoodR HHoseDRBrownB HWalkerD CModelling of epithelial tissue impedance measured using three different design of probePhysiol. Meas20032460523http://dx.doi.org/10.1088/0967-3334/24/2/36910.1088/0967-3334/24/2/36912812442Search in Google Scholar

Walker D C, Brown B H, Blackett A D, Tidy J, Smallwood R H. A study of the morphological parameters of cervical squamous epithelium. Physiol. Meas. 2003;24:121-35. http://dx.doi.org/10.1088/0967-3334/24/1/3091263619110.1088/0967-3334/24/1/309WalkerD CBrownB HBlackettA DTidyJSmallwoodR HA study of the morphological parameters of cervical squamous epitheliumPhysiol. Meas20032412135http://dx.doi.org/10.1088/0967-3334/24/1/30912636191Search in Google Scholar

Walker D C, Brown B H, Smallwood R H, Hose D R, Jones D M. Modelling the electrical properties of bladder tissue–quantifying impedance changes due to infiammation and oedema. Physiol. Meas. 2005;26:251-68. http://dx.doi.org/10.1088/0967-3334/26/3/01010.1088/0967-3334/26/3/010WalkerD CBrownB HSmallwoodR HHoseD RJonesD MModelling the electrical properties of bladder tissue–quantifying impedance changes due to infiammation and oedemaPhysiol. Meas20052625168http://dx.doi.org/10.1088/0967-3334/26/3/01015798300Open DOISearch in Google Scholar

Keshtkar A, Keshtkar A, Smallwood R H. Electrical impedance spectroscopy and the diagnosis of bladder pathology. Physiol. Meas. 2006;27:586-96. http://dx.doi.org/10.1088/0967-3334/27/7/003KeshtkarAKeshtkarASmallwoodR HElectrical impedance spectroscopy and the diagnosis of bladder pathologyPhysiol. Meas20062758696http://dx.doi.org/10.1088/0967-3334/27/7/00310.1088/0967-3334/27/7/00316705257Search in Google Scholar

Hartinger A E, Guardo R, Kokta V, Gagnon H. A 3D hybrid finite element model to characterize the electrical behavior of cutaneous tissues. IEEE Trans. Biomed. Eng. 2010;57:780-9. http://dx.doi.org/10.1109/TBME.2009.203637110.1109/TBME.2009.2036371HartingerA EGuardoRKoktaVGagnonHA 3D hybrid finite element model to characterize the electrical behavior of cutaneous tissuesIEEE Trans. Biomed. Eng2010577809http://dx.doi.org/10.1109/TBME.2009.203637119932994Open DOISearch in Google Scholar

SciBase, Scibase ab homepage, http://www.scibase.seSciBase, Scibase ab homepagehttp://www.scibase.seSearch in Google Scholar

Åberg P. Skin cancer as seen by electrical impedance PhD thesis Karolinska Institutet. Stockholm, Sweden. 2004.ÅbergPSkin cancer as seen by electrical impedance PhD thesis Karolinska InstitutetStockholm, Sweden2004Search in Google Scholar

U. Birgersson, E. Birgersson, S. Ollmar. A methodology for extracting the electrical properties of human skin. Manuscript submitted for publication in Physiol. Meas. 2012.BirgerssonU.BirgerssonE.OllmarS.A methodology for extracting the electrical properties of human skinManuscript submitted for publication in Physiol. Meas201210.1088/0967-3334/34/6/72323719278Search in Google Scholar

J. J. Ackmann, M. A. Seitz. Methods of complex impedance measurements in biologic tissue. Crit Rev Biomed Eng. 1984;11:281-311.6391815AckmannJ. J.SeitzM. A.Methods of complex impedance measurements in biologic tissueCrit Rev Biomed Eng198411281311Search in Google Scholar

O. G. Martinsen, S. Grimnes, E. Haug. Measuring depth depends on frequency in electrical skin impedance measurements. Skin Res Technol. 1999;5:179-181. http://dx.doi.org/10.1111/j.1600-0846.1999.tb00128.x10.1111/j.1600-0846.1999.tb00128.xMartinsenO. G.GrimnesS.HaugE.Measuring depth depends on frequency in electrical skin impedance measurementsSkin Res Technol19995179181http://dx.doi.org/10.1111/j.1600-0846.1999.tb00128.xOpen DOISearch in Google Scholar

COMSOL, Multiphysics Multiphysics 3.5a, http://www.comsol.comMultiphysicsCOMSOLMultiphysics 3.5ahttp://www.comsol.comSearch in Google Scholar