Accesso libero

Impedimetric characterization of human blood using three-electrode based ECIS devices

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Wolf M, Gulich R, Lunkenheimer P, Loidl A. Broadband dielectric spectroscopy on human blood. Biochim. Biophys. Acta, Gen. Subj. 2011;1810(8):727-40. http://dx.doi.org/10.1016/j.bbagen.2011.05.01210.1016/j.bbagen.2011.05.012WolfMGulichRLunkenheimerPLoidlABroadband dielectric spectroscopy on human bloodBiochim. Biophys. Acta, Gen. Subj20111810872740http://dx.doi.org/10.1016/j.bbagen.2011.05.01221641966Open DOISearch in Google Scholar

Faulkner, W. P. and Meites, S. editors: Selected methods of clinical chemistry (1982), Washington, DC, American Association for Clinical Chemistry, Inc, Vol. 9.FaulknerW P.MeitesS.Selected methods of clinical chemistry1982Washington, DCAmerican Association for Clinical Chemistry, IncVol. 9Search in Google Scholar

Mauro B. Quality specification in haematology: the automated blood cell count. Clin. Chim. Acta. 2004;346(1):45-4. http://dx.doi.org/10.1016/j.cccn.2004.02.03810.1016/j.cccn.2004.02.03815234635MauroBQuality specification in haematology: the automated blood cell countClin. Chim. Acta20043461454http://dx.doi.org/10.1016/j.cccn.2004.02.03815234635Open DOISearch in Google Scholar

Amaral CF, Brischwein M, Wolf B. Multiparameter techniques for non-invasive measurement of blood glucose. Sens. Actuators, B. 2009;140(1):12-6. http://dx.doi.org/10.1016/j.snb.2009.04.02310.1016/j.snb.2009.04.023AmaralCFBrischweinMWolfBMultiparameter techniques for non-invasive measurement of blood glucoseSens. Actuators, B20091401126http://dx.doi.org/10.1016/j.snb.2009.04.023Open DOISearch in Google Scholar

Ferrante do Amaral CE, Wolf B. Current development in non-invasive glucose monitoring. Med. Eng. Phys. 2008;30(5):541-9. http://dx.doi.org/10.1016/j.medengphy.2007.06.0031794236010.1016/j.medengphy.2007.06.003Ferrantedo Amaral CEWolfBCurrent development in non-invasive glucose monitoringMed. Eng. Phys20083055419http://dx.doi.org/10.1016/j.medengphy.2007.06.00317942360Search in Google Scholar

Cortina M, Esplandiu MJ, Alegret S, del Valle M. Urea impedimetric biosensor based on polymer degradation onto interdigitated electrodes. Sens. Actuators, B. 2006;118(1-2):84-9. http://dx.doi.org/10.1016/j.snb.2006.04.06210.1016/j.snb.2006.04.062CortinaMEsplandiuMJAlegretSdel ValleMUrea impedimetric biosensor based on polymer degradation onto interdigitated electrodesSens. Actuators, B20061181-2849http://dx.doi.org/10.1016/j.snb.2006.04.062Open DOISearch in Google Scholar

Lakard B, Herlem G, Lakard S, Antoniou A, Fahys B. Urea potentiometric biosensor based on modified electrodes with urease immobilized on polyethylenimine films. Biosens. Bioelectron.2004;19(12):1641-7. http://dx.doi.org/10.1016/j.bios.2003.12.0351514259810.1016/j.bios.2003.12.035LakardBHerlemGLakardSAntoniouAFahysBUrea potentiometric biosensor based on modified electrodes with urease immobilized on polyethylenimine filmsBiosens. Bioelectron2004191216417http://dx.doi.org/10.1016/j.bios.2003.12.03515142598Search in Google Scholar

Gamero M, Pariente F, Lorenzo E, Alonso C. Nanostructured rough gold electrodes for the development of lactate oxidase-based biosensors. Biosens. Bioelectron. 2010;25(9):2038-4. http://dx.doi.org/10.1016/j.bios.2010.01.03210.1016/j.bios.2010.01.03220171079GameroMParienteFLorenzoEAlonsoCNanostructured rough gold electrodes for the development of lactate oxidase-based biosensorsBiosens. Bioelectron201025920384http://dx.doi.org/10.1016/j.bios.2010.01.03220171079Open DOISearch in Google Scholar

Lupu A, Valsesia A, Bretagnol F, Colpo P, Rossi F. Development of a potentiometric biosensor based on nanostructured surface for lactate determination. Sens. Actuators, B. 2007;127(2):606-2. http://dx.doi.org/10.1016/j.snb.2007.05.02010.1016/j.snb.2007.05.020LupuAValsesiaABretagnolFColpoPRossiFDevelopment of a potentiometric biosensor based on nanostructured surface for lactate determinationSens. Actuators, B200712726062http://dx.doi.org/10.1016/j.snb.2007.05.020Open DOISearch in Google Scholar

Aghaei A, Milani Hosseini MR, Najafi M. A novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymer. Electrochim. Acta. 2010;55(5):1503-8. http://dx.doi.org/10.1016/j.electacta.2009.09.03310.1016/j.electacta.2009.09.033AghaeiAMilani HosseiniMRNajafiMA novel capacitive biosensor for cholesterol assay that uses an electropolymerized molecularly imprinted polymerElectrochim. Acta201055515038http://dx.doi.org/10.1016/j.electacta.2009.09.033Open DOISearch in Google Scholar

Szwacki J, Lisowska-Oleksiak A, Szpakowska M. Polymer membranes loaded with lipids for taste sensing: electrochemical impedance spectroscopy studies. Desalina. 2006;198(1-3):1-7. http://dx.doi.org/10.1016/j.desal.2006.09.00210.1016/j.desal.2006.09.002SzwackiJLisowska-OleksiakASzpakowskaMPolymer membranes loaded with lipids for taste sensing: electrochemical impedance spectroscopy studiesDesalina20061981-317http://dx.doi.org/10.1016/j.desal.2006.09.002Open DOISearch in Google Scholar

Xu Y, Hu C, Hu S. A reagentless nitric oxide biosensor based on the direct electrochemistry of hemoglobin adsorbed on the gold colloids modified carbon paste electrode. Sens. Actuators, B. 2010;148(1):253-8. http://dx.doi.org/10.1016/j.snb.2010.05.02810.1016/j.snb.2010.05.028XuYHuCHuSA reagentless nitric oxide biosensor based on the direct electrochemistry of hemoglobin adsorbed on the gold colloids modified carbon paste electrodeSens. Actuators, B201014812538http://dx.doi.org/10.1016/j.snb.2010.05.028Open DOISearch in Google Scholar

Han K-H, Han A, Frazier AB. Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood. Biosens. Bioelectron. 2006;21(10):1907-4. http://dx.doi.org/10.1016/j.bios.2006.01.0241652992210.1016/j.bios.2006.01.024HanK-HHanAFrazierABMicrosystems for isolation and electrophysiological analysis of breast cancer cells from bloodBiosens. Bioelectron2006211019074http://dx.doi.org/10.1016/j.bios.2006.01.024Search in Google Scholar

Polevaya Y, Ermolina I, Schlesinger M, Ginzburg B-Z, Feldman Y. Time domain dielectric spectroscopy study of human cells: II. Normal and malignant white blood cells. Biochim. Biophys. Acta, Biomembr.1999;1419(2):257-71. http://dx.doi.org/10.1016/S0005-2736(99)00072-3PolevayaYErmolinaISchlesingerMGinzburgB-ZFeldmanYTime domain dielectric spectroscopy study of human cells: IINormal and malignant white blood cells. Biochim. Biophys. Acta, Biomembr19991419225771http://dx.doi.org/10.1016/S0005-2736(99)00072-310.1016/S0005-2736(99)00072-3Search in Google Scholar

Yoshihito H, Ikuya O, Yoichi K, Shinji O, Akio Y, Koji A. Temporal variation of dielectric properties of preserved blood. Phys. Med. Biol. 2008;53(1):295. http://dx.doi.org/10.1088/0031-9155/53/1/0211818270410.1088/0031-9155/53/1/021YoshihitoHIkuyaOYoichiKShinjiOAkioYKojiATemporal variation of dielectric properties of preserved bloodPhys. Med. Biol2008531295http://dx.doi.org/10.1088/0031-9155/53/1/021Search in Google Scholar

Hayashi Y, Katsumoto Y, Omori S, Yasuda A, Asami K, Kaibara M. Dielectric Coagulometry: A New Approach To Estimate Venous Thrombosis Risk. Anal. Chem. 2010; 82(23): 9769-4. http://dx.doi.org/10.1021/ac101927n2103367210.1021/ac101927nHayashiYKatsumotoYOmoriSYasudaAAsamiKKaibaraMDielectric Coagulometry: A New Approach To Estimate Venous Thrombosis RiskAnal. Chem2010822397694http://dx.doi.org/10.1021/ac101927nSearch in Google Scholar

Tao D, Adler A. In Vivo Blood Characterization From Bioimpedance Spectroscopy of Blood Pooling. IEEE Trans. Instrum. Meas. 2009;58(11):3831-8. http://dx.doi.org/10.1109/TIM.2009.202083610.1109/TIM.2009.2020836TaoDAdlerAIn Vivo Blood Characterization From Bioimpedance Spectroscopy of Blood PoolingIEEE Trans. Instrum. Meas2009581138318http://dx.doi.org/10.1109/TIM.2009.2020836Open DOISearch in Google Scholar

Foster, KR, Schwan, HP. Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 1989;17:25–104.2651001FosterKRSchwanHPDielectric properties of tissues and biological materials: a critical reviewCrit. Rev. Biomed. Eng19891725104Search in Google Scholar

Fricke H. The theory of electrolytic polarization. Philos. Mag. 1932; 14:310-8.10.1080/14786443209462064FrickeHThe theory of electrolytic polarizationPhilos. Mag1932143108Open DOISearch in Google Scholar

Schwan HP. Alternating current electrode polarisation. Biophys. 1966;3:181-201. http://dx.doi.org/10.1007/BF0119161210.1007/BF01191612SchwanHPAlternating current electrode polarisationBiophys19663181201http://dx.doi.org/10.1007/BF01191612Open DOISearch in Google Scholar

Mishra NN, Retterer S, Zieziulewicz TJ, Isaacson M, Szarowski D, Mousseau DE, Lawrence DA, Turner JN. On-chip micro-biosensor for the detection of human CD4+ cells based on AC impedance and optical analysis. Biosens. Bioelectron. 2005; 21: 696-4. http://dx.doi.org/10.1016/j.bios.2005.01.01110.1016/j.bios.2005.01.01116242607MishraNNRettererSZieziulewiczTJIsaacsonMSzarowskiDMousseauDELawrenceDATurnerJNOn-chip micro-biosensor for the detection of human CD4+ cells based on AC impedance and optical analysisBiosens. Bioelectron2005216964http://dx.doi.org/10.1016/j.bios.2005.01.011Open DOISearch in Google Scholar

Brett CMA, Brett AMO. Electrochemistry-Priniciples. Methods and Applications. Oxford University Press, London, UK. 1993;185-6.BrettCMABrettAMOElectrochemistry-Priniciples. Methods and ApplicationsOxford University PressLondon, UK19931856Search in Google Scholar

Lind R, Connolly P, Wilkinson CDW, Thomson RD. Finite-element analysis applied to extracellular microelectrode design, Sens. Actuators, B. 1991;3:23-0. http://dx.doi.org/10.1016/0925-4005(91)85004-310.1016/0925-4005(91)85004-3LindRConnollyPWilkinsonCDWThomsonRDFinite-element analysis applied to extracellular microelectrode design, SensActuators, B19913230http://dx.doi.org/10.1016/0925-4005(91)85004-3Open DOISearch in Google Scholar

Breckenridge LJ, Wilson RJA, Connolly P, Curtis ASG, Dow JAT, Blackshaw SE, Wilkinson CDW. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording. J. Neurosci. Res. 1995;42:266-6. http://dx.doi.org/10.1002/jnr.490420215856892810.1002/jnr.490420215BreckenridgeLJWilsonRJAConnollyPCurtisASGDowJATBlackshawSEWilkinsonCDWAdvantages of using microfabricated extracellular electrodes for in vitro neuronal recordingJ. Neurosci. Res1995422666http://dx.doi.org/10.1002/jnr.490420215Search in Google Scholar

Dulbecco R, Vogt M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J. Exp. Med. 1954;99(2): 167-82. http://dx.doi.org/10.1084/jem.99.2.1671313079210.1084/jem.99.2.167DulbeccoRVogtMPlaque formation and isolation of pure lines with poliomyelitis virusesJ. Exp. Med195499216782http://dx.doi.org/10.1084/jem.99.2.167Search in Google Scholar

Henry JB. Clinical Diagnosis and Management by Laboratory Methods, WB Saunders Company, Philadelphia, PA. 1979;1:60.HenryJBClinical Diagnosis and Management by Laboratory MethodsWB Saunders CompanyPhiladelphia, PA1979160Search in Google Scholar

Thavasu PW, Longhurst S, Joel SP, Slevin ML, Balkwill FR. Measuring cytokine levels in blood: Importance of anticoagulants, processing, and storage conditions. J. Immunol. Methods. 1992;153(1-2):115-4. http://dx.doi.org/10.1016/0022-1759(92)90313-I10.1016/0022-1759(92)90313-I1381403ThavasuPWLonghurstSJoelSPSlevinMLBalkwillFRMeasuring cytokine levels in blood: Importance of anticoagulants, processing, and storage conditionsJ. Immunol. Methods19921531-21154http://dx.doi.org/10.1016/0022-1759(92)90313-IOpen DOISearch in Google Scholar

Boukamp BA. Equivalent Circuits: User’s Manual. University of Twente, Netherlands. 1993;2nd Edition.BoukampBAEquivalent Circuits: User’s ManualUniversity of TwenteNetherlands19932nd EditionSearch in Google Scholar

Cui X, Martin DC. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens. Actuators, B.2003;89(1-2):92-02. http://dx.doi.org/10.1016/S0925-4005(02)00448-310.1016/S0925-4005(02)00448-3CuiXMartinDCElectrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arraysSens. Actuators, B2003891-29202http://dx.doi.org/10.1016/S0925-4005(02)00448-3Open DOISearch in Google Scholar

Franks W, Schenker I, Schmutz P, Hierlemann A. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans. Biomed. Eng. 2005;52:1295-02. http://dx.doi.org/10.1109/TBME.2005.8475231604199310.1109/TBME.2005.847523FranksWSchenkerISchmutzPHierlemannAImpedance characterization and modeling of electrodes for biomedical applicationsIEEE Trans. Biomed. Eng200552129502http://dx.doi.org/10.1109/TBME.2005.84752316041993Search in Google Scholar

Padmaraj D, Miller JH Jr, Wosik J, Zagozdzon-Wosik W. Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes. Biosens. Bioelectron. 2011;29:13-7. http://dx.doi.org/10.1016/j.bios.2011.06.0502187246410.1016/j.bios.2011.06.050PadmarajDMiller JHJrWosikJZagozdzon-WosikWReduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodesBiosens. Bioelectron201129137http://dx.doi.org/10.1016/j.bios.2011.06.050Search in Google Scholar

Bisquert J, Garcia-Belmonte G, Bueno P, Longo E, Bulhoes LOS. Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J. Electroanal. Chem. 1998; 452(2):229-234. http://dx.doi.org/10.1016/S0022-0728(98)00115-610.1016/S0022-0728(98)00115-6BisquertJGarcia-BelmonteGBuenoPLongoEBulhoesLOSImpedance of constant phase element (CPE)-blocked diffusion in film electrodesJ. Electroanal. Chem19984522229234http://dx.doi.org/10.1016/S0022-0728(98)00115-6Open DOISearch in Google Scholar

Franks W, Schenker I, Schmutz P, Hierlemann A. Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans. Biomed. Eng.2005;52(7):1295-02. http://dx.doi.org/10.1109/TBME.2005.8475231604199310.1109/TBME.2005.847523FranksWSchenkerISchmutzPHierlemannAImpedance characterization and modeling of electrodes for biomedical applicationsIEEE Trans. Biomed. Eng2005527129502http://dx.doi.org/10.1109/TBME.2005.847523Search in Google Scholar

Sakamoto K, Kanai H. Electrical Characteristics of Flowing Blood. Biomedical Engineering, IEEE Trans. Biomed. Eng. 1979;26:686-5. http://dx.doi.org/10.1109/TBME.1979.326459SakamotoKKanaiHElectrical Characteristics of Flowing BloodBiomedical Engineering, IEEE Trans. Biomed. Eng1979266865http://dx.doi.org/10.1109/TBME.1979.32645910.1109/TBME.1979.326459544441Search in Google Scholar

Visser K. Electric conductivity of stationary and flowing human blood at low frequencies. Med. Biol. Eng. Comput. 1992; 30: 636-40. http://dx.doi.org/10.1007/BF0244679610.1007/BF024467961297019VisserKElectric conductivity of stationary and flowing human blood at low frequenciesMed. Biol. Eng. Comput19923063640http://dx.doi.org/10.1007/BF024467961297019Open DOISearch in Google Scholar

Tian-Xian Z. Contributions of suspending medium to electrical impedance of blood. Biochim. Biophys. Acta, Gen. Subj. 1994; 1201: 179-5. http://dx.doi.org/10.1016/0304-4165(94)90039-610.1016/0304-4165(94)90039-6Tian-XianZ.Contributions of suspending medium to electrical impedance of bloodBiochim. Biophys. Acta, Gen. Subj199412011795http://dx.doi.org/10.1016/0304-4165(94)90039-6Open DOISearch in Google Scholar