1. bookVolume 119 (2022): Edizione 1 (January 2022)
Dettagli della rivista
Prima pubblicazione
20 May 2020
Frequenza di pubblicazione
1 volta all'anno
Accesso libero

Carbon fiber reinforced polymer and tensegrity structures in search of model architectural and engineering solutions

Pubblicato online: 15 Dec 2022
Volume & Edizione: Volume 119 (2022) - Edizione 1 (January 2022)
Pagine: -
Ricevuto: 07 Nov 2022
Accettato: 08 Dec 2022
Dettagli della rivista
Prima pubblicazione
20 May 2020
Frequenza di pubblicazione
1 volta all'anno

Adriaenssens, S., Block, P., Veenendaal, D. & Williams, C.J.K. (2014). Shell structures for architecture: form finding and optimization. London, England: Routledge.10.4324/9781315849270 Search in Google Scholar

Ashby, M.F., Ferreira, P.J. & Schodek, D.L. (2009). Nanomaterials, nanotechnologies and design: An introduction for engineers and architects. Amsterdam, Netherlands: Butterworth-Heinemann. Search in Google Scholar

Bacon, R. (1960). U.S. Patent No. US2957756A. Filamentary graphite and  method  for producing the same. Washington, DC: U.S. Patent and Trademark Office. Search in Google Scholar

Bakis, C.E., Bank, L.C., Brown, V.L., Cosenza, E., Davalos, J.F., Lesko, J.J., Machida, A., Rizkalla, S.H., Triantafillou, T.C. (2002). Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review. Journal of Composites for Construction, 6(2). https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73) 10.1061/(ASCE)1090-0268(2002)6:2(73) Search in Google Scholar

Bank L. C. (2006). Composites for construction: Structural Design with FRP Materials. USA: Wiley.10.1002/9780470121429 Search in Google Scholar

Burdett, R., Cook, P. & Rogers, R. (1996). Richard Rogers Partnership: Works and projects. New York, US: The Monacelli Press. Search in Google Scholar

Cheung, K.C. & Gershenfeld, N. (2013). Reversibly Assembled Cellular Composite Materials. Science, 341(6151), 1219–1221. http://dx.doi.org/10.1126/science.1240889 10.1126/science.124088923950496 Search in Google Scholar

Columbia (n.d.). Olympic fencing and gymnastics arenas. Retrieved from: http://www.columbia.edu/cu/gsapp/BT/DOMES/SEOUL/images.html (access: 2022/11/29). Search in Google Scholar

Corbusier, L. (2012). W strone architektury (Vers une architecture). Warszawa, Poland: Fundacja Centrum Architektury. Search in Google Scholar

Cramer, N.B., Cellucci, D.W., Formoso, O.B., Gregg, C.E., Jenett, B.E., Kim, J.H., Search in Google Scholar

Cheung, K.C. (2019). Elastic shape morphing of ultralight structures by programmable assembly. Smart Materials and Structures, 28(5), 055006. https://doi.org/10.1088/1361-665X/ab0ea2 10.1088/1361-665X/ab0ea2781677433479558 Search in Google Scholar

Dörstelmann, M., Knippers, J., Menges, A., Parascho, S., Prado, M. & Schwinn, T. (2015). ICD/ITKE Research Pavilion 2013–14: Modular Coreless Filament Winding Based on Beetle Elytra. Architectural Design, 85(5), 54–59. https://doi.org/10.1002/ad.1954 10.1002/ad.1954 Search in Google Scholar

Dörstelmann, M., Knippers, J., Koslowski, V., Menges, A., Prado, M., Schieber, G. & Vasey, L. (2015). ICD/ITKE Research Pavilion 2014–15: Fibre Placement on a Pneumatic Body Based on a Water Spider Web. Architectural Design, 85(5), 60–65. https://doi.org/10.1002/ad.1955 10.1002/ad.1955 Search in Google Scholar

Dong, L. & Wadley, H. (2015). Mechanical properties of carbon fiber composite octet-truss lattice structures. Composites Science and Technology, 119, 26–33. https://doi.org/10.1016/j.compscitech.2015.09.022 10.1016/j.compscitech.2015.09.022 Search in Google Scholar

Emmerich D.G. (1988). Structures Tendues et Autotendantes. Paris, France: Search in Google Scholar

Edition del’Ecole d’Architecture de Paris La Vilette. Search in Google Scholar

Felbrich B., Früh N., Prado M., Saffarian S., Solly J., Vasey L., Knippers J. & Menges  A. (2017). Multi-Machine Fabrication: An Integrative Design Process Utilising an Autonomous UAV and Industrial Robots for the Fabrication of Long-Span Composite Structures. In ACADIA 2017: Disciplines + Disruption, Boston, USA, October. Search in Google Scholar

Fest, E., Shea, K.,  Domer, B.,  Smith, I. F. C. (2003). Adjustable Tensegrity Structures. Journal of Structural Engineering, 129(4). https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(515) 10.1061/(ASCE)0733-9445(2003)129:4(515) Search in Google Scholar

Franta, A. (2019). Myths and Realities of Adaptable city. Contemporary City as Adaptable Hybrid. IOP Conference Series Materials Science and Engineering, 471(9). 1–10. https://doi.org/10.1088/1757-899X/471/9/092030 10.1088/1757-899X/471/9/092030 Search in Google Scholar

Fu, F. (2006). Non-linear static analysis and design of Tensegrity domes. Steel and Composite Structures, 6(5), 417-433. https://doi.org/10.12989/scs.2006.6.5.417 10.12989/scs.2006.6.5.417 Search in Google Scholar

Gerardo Castro, M.ASCE & Matthys P. Levy, F.ASCE (June 7–9, 1992), Analysis of the Georgia Dome Cable Roof. In Proceedings of the Eighth Conference of Computing in Civil Engineering and Georgraphic Information Systems Symposium, ASCE, ed. by Barry J. Goodno & Jeff R. Wright. Dallas, TX. Search in Google Scholar

Gough, M. (1998). In the Laboratory of Constructivism: Karl Ioganson’s Cold Structures. October, 84, 90–117. https://doi.org/10.2307/779210 10.2307/779210 Search in Google Scholar

Huu, T., Vo-Duy, D., Duong-Gia, D., & Nguyen-Thoi, T. (2018). An efficient procedure for lightweight optimal design of composite laminated beams. Steel and Composite Structures, 27(3), 297–310. http://dx.doi.org/10.12989/scs.2018.27.3.297 Search in Google Scholar

Ikebata, S. & Uzawa, K. (2018). Seismic Reinforcing Material for Important Cultural Properties! Innovative New Construction Material Developed. Japan Science and Technology Agency – Science and Technology for Society. Search in Google Scholar

JEC Group. (2018). Construction and Infrastructure, CABKOMA CFRTP Strand Rod. JEC Innovation Awards 2018: 30 finalists exemplify the best composite innovation worldwide. Paris, France. Search in Google Scholar

Kasprzak, A. (2014). Study on possible applications of tensegrity structures in bridge engineering. PhD thesis, Faculty of Civil Engineering Warsaw University of Technology, Warszawa. Search in Google Scholar

Kayser, M., Cai, L., Falcone, S., Bader, C., Inglessis, N., Darweesh, B. & Oxman, N. (2018). FIBERBOTS: an autonomous swarm-based robotic system for digital fabrication of fiber-based composites. Construction Robotics, 2(1–4), 67–79. https://doi.org/10.1007/s41693-018-0013-y 10.1007/s41693-018-0013-y Search in Google Scholar

Knippers, J., Magna, R. L., Menges, A., Reichert, S., Schwinn, T. & Waimer, F. (2015). ICD/ITKE Research Pavilion 2012: Coreless Filament Winding Based on the Morphological Principles of an Arthropod Exoskeleton. Architectural Design, 85(5), 48–53. https://doi.org/10.1002/ad.1953 10.1002/ad.1953 Search in Google Scholar

KomatsumateRe (n.d.). Lightweight, Strong and Corrosion-free. Retrieved from: https://www.komatsumatere.co.jp/cabkoma/en/ (access: 2022/11/29). Search in Google Scholar

Marks, R. & Fuller, R.B. (1973). The Dymaxion world of Buckminster Fuller. Garden City, New York, USA: Anchor Books. Search in Google Scholar

McDonough, W. & Braungart, M. (2003). The Hannover principles: Design for sustainability. Charlottesville, VA, USA: William McDonough + Partners. Search in Google Scholar

Melaragno, M. (1994). Tensegrity Structures: Filling the Gap Between Art and Science Spatial, lattice, and tension structures. In Proc., IASS-ASCE International Symposium 1994 on Spatial, Lattice and Tension Structures. Proceedings of the IASS-ASCE International Symposium 1994 on Spatial, Lattice and Tension Structures, 1994: 1024–1035. Search in Google Scholar

Millington, R.B. & Nordberg, R.C. (1966). U.S. Patent No. US3294489A. Process for preparing carbon fibers. Washington, DC, USA: U.S. Patent and Trademark Office. Search in Google Scholar

Morgan, M. & Warren, H. (1960). Vitruvius the ten books on architecture: With illustrations and original designs. NY, USA: Dover Publications. Search in Google Scholar

Motro R. (2003). Tensegrity: Structural systems for the future. London, United Kingdom: Hermes Science Publishing Limited. Search in Google Scholar

Motro. R. (2012). Tensegrity: from Art to Structural Engineering. In 2012 IASSAPCS Symposium, May 2012, Séoul, South Korea. 14, p. hal-00857410. Search in Google Scholar

Overstreet, K. (2016). Kengo Kuma Uses Carbon Fiber Strands to Protect Building from Earthquakes. Retrieved from https://www.archdaily.com/785175/komatsu-seiren-fabric-laboratory-creates-cabkoma-strand-rod-to-protect-building-from-ea (date of access: 2020/01/15).rthquakes (access: 2022/11/29). Search in Google Scholar

Pelczarski, M. (2013). About shaping the structure of Katowice Spodek-arena roof. Considerations from interviews with Prof. W. Zalewski. ARCHITECTUS, 69–82. https://doi.org/10.5277/arc130205 Search in Google Scholar

Prado, M., Dörstelmann, M., Menges, A., Solly, J. & Knippers, J. (2017). Elytra Filament Pavilion. Fabricate 2017, 224–231. https://doi.org/10.2307/j.ctt1n7qkg7.35 10.2307/j.ctt1n7qkg7.35 Search in Google Scholar

Pugh, A. (1976). An Introduction to tensegrity. Berkeley, CA, USA: University of California Press.10.1525/9780520338326 Search in Google Scholar

Rastorfer D. (1988). Structural Gymnastics for the Olympics. Architectural Record, NY, USA: Columbia University. Search in Google Scholar

Salinas, J. G. O., Mendoza, M., & Meza, E. G. (2018). Reflections on Frei Otto as Mentor and Promoter of Sustainable Architecture and his collaboration with Kenzo Tange & Ove Arup in 1969. Journal of the International Association for Shell and Spatial Structures, 59(1), 87–100. https://doi.org/10.20898/j.iass.2018.195.900 10.20898/j.iass.2018.195.900 Search in Google Scholar

Snelson K. (1973). Tensegrity Masts. CA, USA: Shelter Publications, Bolinas. Search in Google Scholar

Solomon Fortune (2016). Georgia dome’s roof: tired but true. Retrieved from: http://sites.gsu.edu/sfortune3/2016/03/09/georgia-dome-digital-artifact-5/ (access: 2022/11/29). Search in Google Scholar

Steve Jobs Theater: Foster Partners. Retrieved from https://www.fosterandpartners.com/projects/steve-jobs-theater/ (access: 2022/11/29). Search in Google Scholar

Thermoplastic carbon fiber composite. Retrieved from https://www.komatsumatere.co.jp/cabkoma/en/ (access: 2022/11/29). Search in Google Scholar

The Task Committee on Fiber-Reinforced Composite Structures for Overhead Lines of the Structural Engineering Institute of the ASCE. (2003). Recommended Practice for Fiber-Reinforced Polymer Products for Overhead Utility Line Structures. US: ASCE. Search in Google Scholar

Lin, Y., Lafarie-Frenot, M. C., Bai, J. & Gigliotti, M. (2018). Numerical simulation of the thermoelectric behavior of CNTs/CFRP aircraft composite laminates. Advances in Aircraft and Spacecraft Science, 5(6), 633–652. http://dx.doi.org/10.12989/aas.2018.5.6.633 Search in Google Scholar

Wikimedia (2018). Kurilpa Bridge seen from William Jolly Bridge, Brisbane 01. Retrieved from: https://commons.wikimedia.org/wiki/File:Kurilpa_Bridge_seen_from_William_Jolly_Bridge,_Brisbane_01.jpg (access: 2022/11/29). Search in Google Scholar

Zając, D. (2019). High-strength composite materials in design process of tensegrity structures. In Proc. The Seventh International Conference on Structural Engineering, Mechanics and Computation, Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications (pp. 969–974). Cape Town, South Africa: CRC Press/Balkema. Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo