Accesso libero

Analysis of the 2D motion of a monolith platform mechanism

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Gawlik, A., Harmatys, W., Łaczek, S., Tora, G. (2019). Manipulator effecting 2D microdisplacements. Advances in Mechanism and Machine Science. Mechanisms and Machine Science, 73, 1829–1838.10.1007/978-3-030-20131-9_181Search in Google Scholar

Guangbo, Haoa, Xiuyun, He, Shorya, Awtar (2019). Design and analytical model of a compact flexure mechanism for translational motion. Mechanism and Machine Theory, 142, 1–24.Search in Google Scholar

Haiyang, Li, Guangbo, Hao (2015). A constraint and position identification (CPI) approach for the synthesis of decoupled spatial translational compliant parallel manipulators. Mechanism and Machine Theory, 90, 59–83.Search in Google Scholar

Jiangkun, Shang, Yanling, Tian, Zheng, Li, Fujun, Wang, Kunhai, Cai (2015). A novel voice coil motor-driven compliant micropositioning stage based on flexure mechanism. Review of Scientific Instruments, 86, 1–10.Search in Google Scholar

Junnan, Qian, Yangmin, Li, Lukai, Zhuge (2020). An Investigation on a Novel 3-RCU Flexible Micromanipulator. Micromachines, 423, 1–11.Search in Google Scholar

Ke-qi, Qi, Ya-lin, Ding, Yang, Xiang, Chao, Fang, Yang, Zhang (2017). A novel 2-DOF compound compliant parallel guiding mechanism. Mechanism and Machine Theory, 117, 21–34.Search in Google Scholar

Lijian, Li, Dan, Zhang, Sheng, Guo, Haibo, Qu (2019). Design, modeling, and analysis of hybrid flexure hinges. Mechanism and Machine Theory, 131, 300–316.Search in Google Scholar

Rouhani, E., Nategh, M.J. (2016). An elastokinematic solution to the inverse kinematics of microhexapod manipulator with flexure joints of varying rotation center. Mechanism and Machine Theory, 97, 127–140.10.1016/j.mechmachtheory.2015.11.004Search in Google Scholar

Rui, Lina, Yingzi, Li, Yingxu, Zhang, Tingwei, Wanga, Zhenyu, Wanga, Zihang, Songa, Zhipeng, Doua, Jianqiang, Qiana (2019). Design of A flexure-based mixed-kinematic XY high-precision positioning platform with large range. Mechanism and Machine Theory, 142, 1–16.Search in Google Scholar

Ruizhou, Wang, Xianmin, Zhang (2017). Optimal design of a planar parallel 3-DOF nanopositioner with multi-objective. Mechanism and Machine Theory, 112, 61–83.Search in Google Scholar

Sicong, Wan, Qingsong, Xu (2016). Design and analysis of a new compliant XY micropositioning stage based on Roberts mechanism. Mechanism and Machine Theory, 95, 125–139.Search in Google Scholar

Xiaofeng, Li, Yangmin, Li (2013). Design and Analysis of a 2-DOF Micro-motion Stage based on Differential Amplifier. In: Proceedings of the 13th IEEE International Conference on Nanotechnology (472–477). Beijing.Search in Google Scholar

Xiaozhi, Zhang, Qingsong, Xu (2018). Design, fabrication and testing of a novel symmetrical 3-DOF large-stroke parallel micro/nano-positioning stage. Robotics and Computer–Integrated Manufacturing, 54, 162–172.Search in Google Scholar

Yangmin, Lia, Zhigang, Wua (2016). Design, analysis and simulation of a novel 3-DOF translational micromanipulator based on the PRB model. Mechanism and Machine Theory, 100, 235–258.Search in Google Scholar

Zaitsev, W.A., Raikhman, Ja.A., Bykovski P.A. (1978). Mikromanipulator, Patent no. 590536.Search in Google Scholar

Zeyi, Wu, Qingsong, Xu (2018). Design, optimization and testing of a compact XY parallel nanopositioning stage with stacked structure. Mechanism and Machine Theory, 126, 171–188.Search in Google Scholar