Accesso libero

Biomechanical assessment of lumbar stability: finite element analysis of TLIF with a novel combination of coflex and pedicle screws

 e   
20 mar 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Araújo Â.R.G., Peixinho N., Pinho A.C.M., Claro J.C.P., Quasi-static and dynamic properties of the intervertebral disc: Experimental study and model parameter determination for the porcine lumbar motion segment, Acta Bioeng. Biomech., 2015, 17 (4), 59–66, DOI: 10.5277/ABB-00153-2014-04. Search in Google Scholar

Berkson M.H., Nachemson A.L., Nachemson A., Schultz A.B., Schultz A.B., Mechanical Properties of Human Lumbar Spine Motion Segments. Part II: Responses in Compression and Shear; Influence of Gross Morphology, Journal of Biomechanical Engineering-Transactions of The Asme, 1979, DOI: 10.1115/1.3426225. Search in Google Scholar

Cai X yi., Sun M si., Huang Y peng., Liu Z xuan., Liu C jie., Du C fei., Yang Q., Biomechanical Effect of L4L5 Intervertebral Disc Degeneration on the Lower Lumbar Spine: A Finite Element Study, Orthop. Surg., 2020, 12 (3), 917–930, DOI: 10.1111/os.12703. Search in Google Scholar

CaliŞal E., Uğur L., Evaluation of the plate location used in clavicle fractures during shoulder abduction and flexion movements: A finite element analysis, Acta Bioeng. Biomech., 2018, 20 (4), 41–46, DOI: 10.5277/ABB-01211-2018-03. Search in Google Scholar

Chen S.H., Lin S.C., Tsai W.C., Wang C.W., Chao S.H., Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery – A finite element analysis, BMC Musculoskelet. Disord., 2012, 13, DOI: 10.1186/1471-2474-13-72. Search in Google Scholar

Chen S.H., Tai C.L., Lin C.Y., Hsieh P.H., Chen W.P., Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques – A three-dimensional finite element analysis, BMC Musculoskelet. Disord., 2008, 9, DOI: 10.1186/1471-2474-9-88. Search in Google Scholar

Chen S.-I., Lin R.-M., Chang C.-H., Biomechanical investigation of pedicle screwvertebrae complex: a finite element approach using bonded and contact interface conditions, Med. Eng. Phys., 2003, 25 (4), 275–282, DOI: https://doi.org/10.1016/S1350-4533(02)00219-9. Search in Google Scholar

Fan W., 2018 LGPU-. A comparison of the influence of three different lumbar interbody fusion approaches on stress in the pedicle screw fixation system: finite element static and vibration analyses, Int. J. Numer. Method Biomed. Eng. n.d., DOI: https://doi.org/10.1002/cnm.3162. Search in Google Scholar

Fan W., 2019 LGPU-. Biomechanical comparison of the effects of anterior, posterior and transforaminal lumbar interbody fusion on vibration characteristics of the human lumbar spine, Comput. Methods Biomech. Biomed. Engin. n.d., DOI: https://doi.org/10.1080/10255842.2019.1566816. Search in Google Scholar

Fan W., 2020 LGPU-. The effect of non-fusion dynamic stabilization on biomechanical responses of the implanted lumbar spine during whole-body vibration, Comput. Methods Programs Biomed. n.d., DOI: https://doi.org/10.1016/j.cmpb.2020.105441. Search in Google Scholar

Fan W., Guo L.-X., The Role of Posterior Screw Fixation in Single-Level Transforaminal Lumbar Interbody Fusion During Whole Body Vibration: A Finite Element Study, World Neurosurg., 2018, DOI: 10.1016/j.wneu.2018.03.150. Search in Google Scholar

Fan W., Guo L.X., 2021 MZPU-. Biomechanical analysis of lumbar interbody fusion supplemented with various posterior stabilization systems, European Spine Journal n.d., DOI: https://doi.org/10.1007/s00586-021-06856-7. Search in Google Scholar

Fan Y., Zhou S., Xie T., Yu Z., Han X., Zhu L., Topping-off surgery vs posterior lumbar interbody fusion for degenerative lumbar disease: A finite element analysis, J. Orthop. Surg. Res., 2019, 14 (1), DOI: 10.1186/s13018-019-1503-4. Search in Google Scholar

George S.P., Venkatesh K., Saravana K.G., Development, calibration and validation of a comprehensive customizable lumbar spine FE model for simulating fusion constructs, Med. Eng. Phys., 2023, 118, 104016, DOI: https://doi.org/10.1016/j.medengphy.2023.104016. Search in Google Scholar

Guo L.X., Li R., Zhang M., Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method, Acta Bioeng. Biomech., 2016, 18 (2), 19–29, DOI: 10.5277/ABB-00406-2015-02. Search in Google Scholar

Guo T.-M., Lu J., Xing Y.-L., Liu G.-X., Zhu H.-Y., Yang L., Qiao X.-M., A 3-Dimensional Finite Element Analysis of Adjacent Segment Disk Degeneration Induced by Transforaminal Lumbar Interbody Fusion After Pedicle Screw Fixation, World Neurosurg., 2019, 124, e51–7, DOI: 10.1016/j.wneu.2018.11.195. Search in Google Scholar

Ito K., Ito Z., Nakamura S., Ito F., Shibayama M., Miura Y., Minimization of lumbar interbody fusion by percutaneous full-endoscopic lumbar interbody fusion (PELIF), and its minimally invasiveness comparison with minimally invasive surgery- transforaminal lumbar interbody fusion (MIS-TLIF), Interdisciplinary Neurosurgery, 2023, 34, 101794, DOI: 10.1016/j.inat.2023.101794. Search in Google Scholar

Jaramillo H.E., Garcia J.J., Elastic constants influence on the L4-L5-S1 annuli fibrosus behavior, a probabilistic finite element analysis, Acta of Bioengineering and Biomechanics, Original Paper, 2017, 19 (4), DOI: 10.5277/ABB-00949-2017-02. Search in Google Scholar

Kim D.H., Hwang R.W., Lee G.-H., Joshi R., Baker K.C., Arnold P., Sasso R., Park D., Fischgrund J., Comparing rates of early pedicle screw loosening in posterolateral lumbar fusion with and without transforaminal lumbar interbody fusion, The Spine Journal, 2020, 20 (9), 1438–1445, DOI: 10.1016/j.spinee.2020.04.021. Search in Google Scholar

Lee N., Shin D.A., Kim K.N., Yoon D.H., Ha Y., Shin H.C., Yi S., Paradoxical Radiographic Changes of Coflex Interspinous Device with Minimum 2-Year Follow-Up in Lumbar Spinal Stenosis, World Neurosurg., 2016, 85, 177–184, DOI: https://doi.org/10.1016/j.wneu.2015.08.069. Search in Google Scholar

Liu Z., Zhang S., Li J., 2022 HTPU-. Biomechanical comparison of different interspinous process devices in the treatment of lumbar spinal stenosis: a finite element analysis, BMC Musculoskelet. Disord. n.d., DOI: https://doi.org/10.1186/s12891-022-05543-y. Search in Google Scholar

Lo C.-C., Lo C.C., Tsai K.J., Tsai K.-J., Zhong Z.-C., Chen S.-H., Chen S.H., Hung C., Biomechanical differences of Coflex-F and pedicle screw fixation combined with TLIF or ALIF – a finite element study, Comput. Methods Biomech. Biomed. Engin., 2011, DOI: 10.1080/10255842.2010.501762. Search in Google Scholar

Lo H.J., Chen H.M., Kuo Y.J., Yang S.W., Effect of different designs of interspinous process devices on the instrumented and adjacent levels after double-level lumbar decompression surgery: A finite element analysis, PLoS One, 2020, 15 (12), DOI: 10.1371/journal.pone.0244571. Search in Google Scholar

Ma X., Lin L., Wang J., Meng L., Zhang X., Miao J., Oblique lateral interbody fusion combined with unilateral versus bilateral posterior fixation in patients with osteoporosis, J. Orthop. Surg. Res., 2023, 18 (1), 776, DOI: 10.1186/s13018-023-04262-x. Search in Google Scholar

MiĘkisiak G., ŁĄtka D., Janusz W., UrbaŃski W., ZaŁuski R., Kubaszewski Ł., The change of volume of the lumbar vertebrae along with aging in asymptomatic population: A preliminary analysis, Acta Bioeng. Biomech., 2018, 20 (3), 25–30, DOI: 10.5277/ABB-01166-2018-01. Search in Google Scholar

Mo Z., Li D., Zhang R., Chang M., Yang B., Tang S., Comparative effectiveness and safety of posterior lumbar interbody fusion, Coflex, Wallis, and X-stop for lumbar degenerative diseases: A systematic review and network metaanalysis, Clin. Neurol. Neurosurg., 2018, 172, 74–81, DOI: 10.1016/j.clineuro.2018.06.030. Search in Google Scholar

Nakhli Z., Hatira F.B., Pithioux M., Chabrand P., Saanouni K., On prediction of the compressive strength and failure patterns of human vertebrae using a quasi-brittle continuum damage finite element model, Acta Bioeng. Biomech., 2019, 21 (2), 143–151, DOI: 10.5277/ABB-01265-2019-03. Search in Google Scholar

Park W.M., Li G., Cha T., Development of a novel FE model for investigation of interactions of multi-motion segments of the lumbar spine, Med. Eng. Phys., 2023, 120, 104047, DOI: https://doi.org/10.1016/j.medengphy.2023.104047. Search in Google Scholar

Pradeep K., Pal B., Effects of open and minimally invasive Transforaminal Lumbar Interbody Fusion (TLIF) surgical techniques on mechanical behaviour of fused L3-L4 FSU: A comparative finite element study, Med. Eng. Phys., 2024, 123, 104084, DOI: https://doi.org/10.1016/j.medengphy.2023.104084. Search in Google Scholar

Rana M., Roy S., Biswas P., Biswas S.K., Biswas J.K., Design and development of a novel expanding flexible rod device (FRD) for stability in the lumbar spine: A finiteelement study, Int. J. Artif. Organs, 2020, 43 (12), 803–810, DOI: 10.1177/0391398820917390. Search in Google Scholar

Salleh N.S.M., Mazlan M.H., Abdullah N.S., Ahmad I.L., Abdullah A.H., Jalil M.H.A., Takano H., Nordin N.D.D., Design and analysis of infill density effects on interbody fusion cage construct based on finite element analysis, 1st National Biomedical Engineering Conference, NBEC 2021, Institute of Electrical and Electronics Engineers Inc., 2021, 25–29. Search in Google Scholar

Schenck C.D., Terpstra S.E.S., Moojen W.A., van Zwet E., Peul W., Arts M.P., Vleggeert-Lankamp C.L.A., Interspinous process device versus conventional decompression for lumbar spinal stenosis: 5-year results of a randomized controlled trial, J. Neurosurg. Spine, 2022, 36 (6), 909–917, DOI: 10.3171/2021.8.SPINE21419. Search in Google Scholar

Stokes I.A.F., Gardner-Morse M., A database of lumbar spinal mechanical behavior for validation of spinal analytical models, J. Biomech., 2016, 49 (5), 780–785, DOI: 10.1016/j.jbiomech.2016.01.035. Search in Google Scholar

Teng L., 2020 YLPU-. Interlaminar stabilization offers greater biomechanical advantage compared to interspinous stabilization after lumbar decompression: a finite element analysis, J. Orthop. Surg. Res. n.d., DOI: https://doi.org/10.1186/s13018-020-01812-5. Search in Google Scholar

Teo E.C., Ng H.W., Evaluation of the role of ligaments, facets and disc nucleus in lower cervical spine under compression and sagittal moments using finite element method, Med. Eng. Phys., 2001, 23 (3), 155–164, DOI: https://doi.org/10.1016/S1350-4533(01)00036-4. Search in Google Scholar

Vadapalli S., Sairyo K., Goel V.K., Robon M., Biyani A., Khandha A., Ebraheim N.A., Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study, Spine, (Phila Pa 1976), 2006, 31 (26), E992-8, DOI: 10.1097/01.brs.0000250177. 84168.ba. Search in Google Scholar

Wang B., Wang B., Wang B., Hua W., Ke W., Lu S., Li X., Zeng X., Yang C., Biomechanical Evaluation of Transforaminal Lumbar Interbody Fusion and Oblique Lumbar Interbody Fusion on the Adjacent Segment: A Finite Element Analysis, World Neurosurg., 2019, DOI: 10.1016/j.wneu.2019.02.164. Search in Google Scholar

Wong C.E., Hu H.T., Kao L.H., Liu C.J., Chen K.C., Huang K.Y., Biomechanical feasibility of semi-rigid stabilization and semi-rigid lumbar interbody fusion: a finite element study, BMC Musculoskelet. Disord., 2022, 23 (1), DOI: 10.1186/s12891-021-04958-3. Search in Google Scholar

Xu M., Yang J., Lieberman I.H., Haddas R., Finite element method-based study of pedicle screwbone connection in pullout test and physiological spinal loads, Med. Eng. Phys., 2019, 67, 11–21, DOI: 10.1016/j.medengphy.2019.03.004. Search in Google Scholar

Yan J., Wu Z., Wang X., Xing Z., Song H., Zhao Y., Zhang J., Wang Y., Qiu G., Finite element analysis on stress change of lumbar spine, Zhonghua Yi Xue Za Zhi 2009, 89 (17), 1162–1165. Search in Google Scholar

Yang M., Sun G., Guo S., Zeng C., Yan M., Han Y., Xia D., Zhang J., Li X., Xiang Y. et al., The Biomechanical Study of Extraforaminal Lumbar Interbody Fusion: A Three-Dimensional Finite-Element Analysis, J. Healthc. Eng., 2017, 2017, 9365068, DOI: 10.1155/2017/9365068. Search in Google Scholar

Yang S.C., Liu P.H., Tu Y.K., Investigationof pullout strength in different designs of pedicle screws for osteoporotic bone quality usingfinite element analysis, Acta Bioeng. Biomech., 2019, 21 (3), DOI: 10.5277/ABB-01385-2019-03. Search in Google Scholar

Yin J.-Y., 2020 LGPU-. Biomechanical analysis of lumbar spine with interbody fusion surgery and U-shaped lumbar interspinous spacers, Comput. Methods Biomech. Biomed. Engin. n.d., DOI: https://doi.org/10.1080/10255842.2020.1851368. Search in Google Scholar

Zhao Y., Li J., Wang D., Liu Y., Tan J., Zhang S., Comparison of stability of two kinds of sacro-iliac screws in the fixation of bilateral sacral fractures in a finite element model, Injury, 2012, 43 (4), 490–494, DOI: 10.1016/j.injury.2011.12.023. Search in Google Scholar

Zhong R., Xue X., Wang R., Dan J., Wang C., Liu D., Safety and efficacy of unilateral and bilateral pedicle screw fixation for lumbar degenerative diseases by transforaminal lumbar interbody fusion: An updated systematic review and meta-analysis, Front. Neurol., 2022, 13, DOI: 10.3389/fneur. 2022.998173. Search in Google Scholar

Zhong Z.-C., Wei S.-H., Wang J.-P., Feng C.-K., Chen C.-S., Yu C., Finite element analysis of the lumbar spine with a new cage using a topology optimization method, Med. Eng. Phys., 2006, 28 (1), 90–98, DOI: https://doi.org/10.1016/j.medengphy.2005.03.007. Search in Google Scholar

Zhu J., Shen H., Cui Y., Fogel G.R., Liao Z., Liu W., Biomechanical Evaluation of Transforaminal Lumbar Interbody Fusion with Coflex_F and Pedicle Screw Fixation: Finite Element Analysis of Static and Vibration Conditions, Orthop. Surg., 2022, DOI: 10.1111/os.13425. Search in Google Scholar