Adipose-derived stem cells and ginkgo biloba extract-loaded PCL/gelatin nanofibrous scaffolds for peripheral nerve injury repair: the impact of physical activity
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Al Kury L.T., Dayyan F., Ali Shah F., Malik Z., Khalil A.A., Alattar A., Alshaman R., Ali A., Khan Z., Ginkgo biloba extract protects against methotrexate-induced hepatotoxicity: A computational and pharmacological approach, Molecules, 2020, 25, 25–40, DOI: 10.3390/molecules25112540.Search in Google Scholar
Arif Z.U., Khalid M.Y., Noroozi R., Sadeghianmaryan A., Jalalvand M., Hossain M., Recent advances in 3d-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications, Int. J. Biol. Macromol., 2022, 14, 120–135, DOI: 10.1016/j.ijbiomac.2022.07.140.Search in Google Scholar
Armada-da-Silva P.A., Pereira C., Amado S., Veloso A.P., Role of physical exercise for improving posttraumatic nerve regeneration, Int. Rev. Neurobiol., 2013, 109, 125–149, DOI: 10.1016/B978-0-12-420045-6.00006-7.Search in Google Scholar
Bonaventura G., Incontro S., Iemmolo R., La Cognata V., Barbagallo I., Costanzo E., Barcellona M.L., Pellitteri R., Cavallaro S., Dental mesenchymal stem cells and neuroregeneration: A focus on spinal cord injury, Cell Tissue Res., 2020, 379, 421–438, DOI: 10.1007/s00441-019-03109-4.Search in Google Scholar
Carriel V., Alaminos M., Garzón I., Campos A., Cornelissen M., Tissue engineering of the peripheral nervous system, Expert Rev. Neurother., 2014, 14, 301–318, DOI: 10.1586/14737175.2014.887444.Search in Google Scholar
Cobianchi S., Arbat-Plana A., Lopez-Alvarez V., Navarro X., Neuroprotective effects of exercise treatments after injury: The dual role of neurotrophic factors, Curr. Neuropharmacol., 2017, 15, 495–518, DOI: 10.2174/1570159X14666160330105132.Search in Google Scholar
Dong M.M., Yi T.H., Stem cell and peripheral nerve injury and repair, Facial Plast. Surg., 2010, 26, 421–428, DOI: 10.1055/s-0030-1265023.Search in Google Scholar
Dong R., Liu C., Tian S., Bai J., Yu K., Liu L., Tian D., Electrospun polycaprolactone (pcl)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression, PLoS One, 2020, 15, 15–31, DOI: https://doi.org/10.1371/journal.pone.0244301.Search in Google Scholar
Duymaz B.T., Erdiler F.B., Alan T., Aydogdu M.O., Inan A.T., Ekren N., Uzun M., Sahin Y.M., Bulus E., Oktar F.N., 3d bio-printing of levan/polycaprolactone/gelatin blends for bone tissue engineering: Characterization of the cellular behavior, Eur. Polym. J., 2019, 119, 426–437, DOI: https://doi.org/10.1016/j.eurpolymj.2019.08.015.Search in Google Scholar
Echave M., Burgo L., Pedraz J., Orive G., Gelatin as biomaterial for tissue engineering, Curr. Pharm. Des., 2017, 23, 3567–3584, DOI: 10.2174/0929867324666170511123101.Search in Google Scholar
Farzamfar S., Ehterami A., Salehi M., Vaeez A., Atashi A., Sahrapeyma H., Unrestricted somatic stem cells loaded in nanofibrous conduit as potential candidate for sciatic nerve regeneration, J. Mol. Neurosci., 2019, 67, 48–61, DOI: 10.1007/s12031-018-1209-9.Search in Google Scholar
Farzamfar S., Naseri-Nosar M., Samadian H., Mahakizadeh S., Tajerian R., Rahmati M., Vaez A., Salehi M., Taurine-loaded poly (ε-caprolactone)/gelatin electrospun mat as a potential wound dressing material: in vitro and in vivo evaluation, J. Bioact. Compat. Polym., 2018, 33, 282–294, https://doi.org/10.1177/088391151773710Search in Google Scholar
Hadjiargyrou M., Chiu J.B., Enhanced composite electrospun nanofiber scaffolds for use in drug delivery, Expert Opin. Drug Deliv., .2008, 5, 1093–1106, DOI: 10.1517/17425247.5.10.1093.Search in Google Scholar
Houlton J., Abumaria N., Hinkley S.F., Clarkson A.N., Therapeutic potential of neurotrophins for repair after brain injury: A helping hand from biomaterials, Front. Neurosci., 2019, 13, 790–805, DOI: 10.3389/fnins.2019.00790.Search in Google Scholar
Houshyar S., Bhattacharyya A., Shanks R., Peripheral nerve conduit: Materials and structures, ACS Chem. Neurosci., 2019, 10, 349–365, DOI: https://doi.org/10.1021/acschemneuro.9b00203.Search in Google Scholar
Huang W., Ma Y.X., Fan Y.B., Lai S.M., Liu H.Q., Liu J., Luo L., Li G.Y., Tian S.M., Extract of ginkgo biloba promotes neuronal regeneration in the hippocampus after exposure to acrylamide, Neural Regen. Res., 2017, 12, 12–34, DOI: 10.4103/1673-5374.213548.Search in Google Scholar
Lavorato A,, Raimondo S,, Boido M., Muratori L., Durante G., Cofano F., Vincitorio F., Petrone S., Titolo P., Tartara F., Mesenchymal stem cell treatment perspectives in peripheral nerve regeneration: Systematic review, Int. J. Mol. Sci., 2021, 22, 57–62, DOI: 10.3390/ijms22020572.Search in Google Scholar
Lee S., Patel M., Patel R., Electrospun nanofiber nerve guidance conduits for peripheral nerve regeneration: A review, Eur. Polym. J., 2022, 15, 111–125, DOI: https://doi.org/10.1016/j.eurpolymj.2022.111663.Search in Google Scholar
Lee S.K., Wolfe S.W., Peripheral nerve injury and repair, JAAOS-Journal of the American AAOS, 2000, 8, 243–252.Search in Google Scholar
Li X., Guan Y., Li C., Zhang T., Meng F., Zhang J., Li J., Chen S., Wang Q., Wang Y., Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury, Stem Cell Res. Ther., 2022, 13, 1–13, DOI: https://doi.org/10.1186/s13287-021-02690-2Search in Google Scholar
Liu J.A., Yu J., Cheung C.W., Immune actions on the peripheral nervous system in pain, Int. J. Mol. Sci., 2021, 22, 14–48, DOI: 10.3390/ijms22031448.Search in Google Scholar
Liu P., Peng J., Han G.H., Ding X., Wei S., Gao G., Huang K., Chang F., Wang Y., Role of macrophages in peripheral nerve injury and repair, Neural Regen. Res., 2019, 14, 13–35, DOI: 10.4103/1673-5374.253510.Search in Google Scholar
Masgutov R., Masgutova G., Mullakhmetova A., Zhuravleva M., Shulman A., Rogozhin A., Syromiatnikova V., Andreeva D., Zeinalova A., Idrisova K., Adipose-derived mesenchymal stem cells applied in fibrin glue stimulate peripheral nerve regeneration, Front. Med., 2019, 6, 68–79, DOI: 10.3389/fmed.2019.00068.Search in Google Scholar
Maugeri G., D’Agata V., Trovato B., Roggio F., Castorina A., Vecchio M., Di Rosa M., Musumeci G., The role of exercise on peripheral nerve regeneration: from animal model to clinical application, Heliyon, 2021, 7, 20–45, DOI: 10.1016/j.heliyon.2021.e08281.Search in Google Scholar
Mietto B.S., Mostacada K., Martinez A.M., Neurotrauma and inflammation: Cns and pns responses, Mediators Inflamm., 2015, 21–36, DOI: 10.1155/2015/251204.Search in Google Scholar
Naseri-Nosar M., Farzamfar S., Sahrapeyma H., Ghorbani S., Bastami F., Vaez A., Salehi M., Cerium oxide nanoparticle-containing poly (ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: In vitro and in vivo evaluation, Mater. Sci. Eng. C, 2017, 81, 366–372, DOI: 10.1016/j.msec.2017.08.013.Search in Google Scholar
O’Brien F.J., Biomaterials and scaffolds for tissue engineering, Mater Today, 2011, 14, 88–95, DOI: https://doi.org/10.1016/S1369-7021(11)70058-X.Search in Google Scholar
Oliveira J.T. De C., Lima S.V.S., Mendonça H.R., Andrade K.M., Baptista A.F., Martinez A.M., Peripheral nervous system: regenerative therapies. Regenerative Medicine- from protocol to patient: 4, Regen. Ther., 2016, 12, 147–178, DOI: https://doi.org/10.1007/978-3-319-28293-0.Search in Google Scholar
Park J.S., Höke A., Treadmill exercise-induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors, PLoS One, 2014, 9, 156–165, DOI: 10.1371/journal.pone.0090245.Search in Google Scholar
Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., Grigolo B., Scaffolds for bone tissue engineering: state of the art and new perspectives, Mater. Sci. Eng. C, 2017, 78, 246–262, DOI: 10.1016/j.msec.2017.05.017.Search in Google Scholar
Shahbazi E., Kiani S., Gourabi H., Baharvand H., Electrospun nanofibrillar surfaces promote neuronal differentiation and function from human embryonic stem cells, Tissue Eng. Part A, 2011, 17, 21–31, DOI: 10.1089/ten. TEA.2011.0121.Search in Google Scholar
Singh S.K., Srivastav S., Castellani R.J., Plascencia-Villa G., Perry G., Neuroprotective and antioxidant effect of ginkgo biloba extract against ad and other neurological disorders, Neurotherapeutics, 2019, 16, 66–74, DOI: 10.1007/s13311-019-00767-8.Search in Google Scholar
Smith A.S., Passey S.L., Martin N.R., Player D.J., Mudera V., Greensmith L., Lewis M.P., Creating interactions between tissue-engineered skeletal muscle and the peripheral nervous system, Cells Tissues Organs, 2016, 202, 143–158, DOI: 10.1159/000443634.Search in Google Scholar
Sullivan R., Dailey T., Duncan K., Abel N., Borlongan C.V., Peripheral nerve injury: Stem cell therapy and peripheral nerve transfer, Int. J. Mol. Sci., 2016, 17, 21–33, DOI: 10.3390/ijms17122101.Search in Google Scholar
Tao Z., Jin W., Ao M., Zhai S., Xu H., Yu L., Evaluation of the anti-inflammatory properties of the active constituents in ginkgo biloba for the treatment of pulmonary diseases, Food Funct., 2019, 10, 209–220, DOI: 10.1039/c8fo02506a.Search in Google Scholar
Taylor C.S., Haycock J.W., Biomaterials and scaffolds for repair of the peripheral nervous system, J. Tissue Eng. Regen. Med., 2022, 20, 245–279, DOI: https://doi.org/10.1007/978-3-030-06217-0_3-1.Search in Google Scholar
Van Opstal N., Feyen H., Luyckx J., Bellemans J., Mean tensile strength of the pcl in tka depends on the preservation of the tibial insertion site, Knee Surg. Sports Traumatol. Arthrosc., 2016, 24, 273–288, DOI: 10.1007/s00167-014-3377-7.Search in Google Scholar
Vijayavenkataraman S., Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods, Acta Biomater., 2020, 106, 54–69, DOI: 10.1016/j.actbio.2020.02.003.Search in Google Scholar
Yazdanpanah A., Madjd Z., Pezeshki-Modaress M., Khosrowpour Z., Farshi P., Eini L., Kiani J., Seifi M., Kundu S.C., Ghods R., Bioengineering of fibroblast-conditioned polycaprolactone/gelatin electrospun scaffold for skin tissue engineering, Artif. Organs, 2022, 46, 1040–1054, DOI: 10.1111/aor.14169.Search in Google Scholar
Ye K., Kuang H., You Z., Morsi Y., Mo X., Electrospun nanofibers for tissue engineering with drug loading and release, Pharmaceutics, 2019, 11, 182–193, DOI: 10.3390/pharmaceutics11040182.Search in Google Scholar
Yi S., Zhang Y., Gu X., Huang L., Zhang K., Qian T., Gu X., Application of stem cells in peripheral nerve regeneration, Burns Trauma, 2020, 8, 15–32, DOI: 10.1093/burnst/tkaa002.Search in Google Scholar
Yousefi F., Arab F.L., Nikkhah K., Amiri H., Mahmoudi M., Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries, Life Sci., 2019, 221, 99–108, DOI: 10.1016/j.lfs.2019.01.052.Search in Google Scholar
Zhang J., Liu Y., Chen Y., Yuan L., Liu H., Wang J., Liu Q., Zhang Y., Adipose-derived stem cells: Current applications and future directions in the regeneration of multiple tissues, Stem Cells Int., 2020, 11, 23–39, DOI: 10.1155/2020/8810813.Search in Google Scholar
Zhang P.X., Han N., Kou Y.H., Zhu Q.T., Liu X.L., Quan D.P., Chen J.G., Jiang B.G., Tissue engineering for the repair of peripheral nerve injury, Neural Regen. Res., 2019, 14, 51–69, DOI: 10.4103/1673-5374.243701.Search in Google Scholar
Zhang R.C., Du W.Q., Zhang J.Y., Yu S.X., Lu F.Z., Ding H.M., Cheng Y.B., Ren C., Geng D.Q., Mesenchymal stem cell treatment for peripheral nerve injury: A narrative review, Neural Regen. Res., 2021, 16, 210–231, DOI: 10.4103/1673-5374.310941.Search in Google Scholar
Zochodne D., Levy D., Nitric oxide in damage, disease and repair of the peripheral nervous system, Cell. Mol. Biol., 2005, 51, 255–267.Search in Google Scholar