This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aravindan V., Jinesh K.B., Prabhakar R.R., Kale V.S., Madhavi S., Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries, Nano Energy, 2013, 2, 720–725, DOI: 10.1016/j.nanoen.2012.12.007.Search in Google Scholar
Bansal P., Singh G., Sidhu H.S., Improvement of surface properties and corrosion resistance of Ti13Nb13Zr titanium alloy by plasma-sprayed HA/ZnO coatings for biomedical applications, Mater. Chem. Phys., 2021, 30 (3), 257, DOI: 10.1016/j.matchemphys.2020.123738.Search in Google Scholar
Bansal P., Singh G., Sidhu H.S., Plasma-Sprayed Hydroxyapatite- Strontium Coating for Improved Corrosion Resistance and Surface Properties of Biodegradable AZ31 Mg Alloy for Biomedical Applications, J. Mater. Eng. Perform., 2021, 30, 1768–1779, DOI: 10.1007/s11665-021-05490-0.Search in Google Scholar
Bhalshankar S., Application of Nano Technology, [in:] Biomedical Engineering EasyChair, 2021.Search in Google Scholar
Hacking S.A., Zuraw M., Harvey E.J., Tanzer M., Krygier J.J., Bobyn J.D., A physical vapor deposition method for controlled evaluation of biological response to biomaterial chemistry and topography, J. Biomed. Mater. Res., Part A, 2007, 82 (1), 179–187, https://doi.org/10.1002/jbm.a.31131Search in Google Scholar
Hussein M.A., Yilbas B., Kumar A.M., Drew R., Al-Aqeeli N., Influence of Laser Nitriding on the Surface and Corrosion Properties of Ti-20Nb-13Zr Alloy in Artificial Saliva for Dental Applications, J. Mater. Eng. Perform., 2018, 27 (9), 4655–4664, https://doi.org/10.1007/s11665-018-3569-2Search in Google Scholar
Kierat O., Dudek A., Adamczyk L., The effect of the corrosion medium on silane coatings deposited on titanium grade 2 and titanium alloy Ti13Nb13Zr, Mater., 2022, 14 (21), https://doi.org/10.3390/ma14216350Search in Google Scholar
Kopova I., Stráský J., Harcuba P., Landa M., Janeček M., Bačákova L., Newly developed Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility, Mater. Sci. Eng. C, 2016, 60, 230–238, https://doi.org/10.1016/J.MSEC.2015.11.043Search in Google Scholar
Kuroda D., Niinomi M., Morinaga M., Kato Y., Yashiro T., Design and mechanical properties of new β type titanium alloys for implant materials, Mater. Sci. Eng. A, 1998, 243 (1–2), 244–249, https://doi.org/10.1016/S0921-5093(97)00808-3.Search in Google Scholar
Lisoń J., Taratuta A., Paszenda Z., Dyner M., Basiaga M., A study on the physicochemical properties of surface modified Ti13Nb13Zr alloy for skeletal implants, Acta Bioeng. Biomech., 2022, 24 (1), 39–47, DOI: 10.37190/ABB-01919-2021-04.Search in Google Scholar
Liu X., Chu P.K., Ding C., Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R Rep., 2004, 47 (3–4), 49–121, https://doi.org/10.1016/J.MSER.2004.11.001Search in Google Scholar
Morinaga M., Kato M., Kamimura T., Fukumotom M., Harada I., Kubo K., Theoretical design of β-type titanium alloys, Titanium 1992, Science and Technology, Proc. 7th Int. Conf. on Titanium, San Diego, CA, USA, June 29–July 2, 1992, 276–283.Search in Google Scholar
Niinomi M., Liu Y., Nakai M., Liu H., Li H., Biomedical titanium alloys with Young’s moduli close to that of cortical bone, Regen. Biomater., 2016, 3 (3), 173–185, https://doi.org/10.1093/rb/rbw016Search in Google Scholar
Pawłowski Ł., Rościszewska M., Majkowska-Marzec B., Jażdżewska M., Bartmański M., Zieliński A., Tybuszewska N., Samsel P., Influence of Surface Modification of Titanium and Its Alloys for Medical Implants on Their Corrosion Behavior, Mater., 2022, 15 (21), 7556, https://doi.org/10.3390/ma15217556Search in Google Scholar
Piotrowska K., Granek A., Madej M., Assessment of Mechanical and Tribological Properties of Diamond-Like Carbon Coatings on the Ti13Nb13Zr Alloy, Open Eng., 2020, 10 (1), 536–545, https://doi.org/10.1515/eng-2020-0043.Search in Google Scholar
Quinn J., McFadden R., Chan C.W., Carson L., Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation, iScience, 2020, 23 (11), 101745, DOI: 10.1016/j.isci.2020.101745.Search in Google Scholar
Semlitsch M., Staub F., Weber H., Titanium-Aluminium-Niobium Alloy, Development for Biocompatible, High Strength Surgical Implants – Titan-Aluminium-Niob-Legierung, entwickelt für körperverträgliche, hochfeste Implantate in der Chirurgie”, BMT, 2009, 30 (12), 334–339, https://doi.org/10.1515/bmte.1985.30.12.334Search in Google Scholar