This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ashton S.J., Factors associated with pelvis and knee injuries in pedestrians struck by the fronts of cars, SAE Tech. Pap., 1981, DOI: 10.4271/811026.Search in Google Scholar
Bunketorp O., Romanus B., Hansson T., Aldman B., Thorngren L., Eppinger R.H., Experimental study of a compliant bumper system, SAE Tech. Pap., 1983, DOI: 10.4271-831623.Search in Google Scholar
Chen J.Q., Cheng R.J., Lan F.C., Zhou Y.J., Analysis of lower limb injury mechanism of an average Chinese pedestrian lower limb FE model in lateral impact, Int. J. Veh. Saf., 2020, 11 (4), 330, DOI: 10.1504/IJVS.2020.111526.Search in Google Scholar
Huang J.H., Zheng W.Q., Optimization design of vehicle front-end structure for pedestrian protection lower leg, Mechanical Engineering and Automation, 2018, 6, 85–87.Search in Google Scholar
Jiang X., Yang J., Wang B., Zhang W., An investigation of biomechanical mechanisms of occupant femur injuries under compression-bending load, Chinese Journal of Theoretical and Applied Mechanics, 2014, 46 (3), 465–474, DOI: 10.6052/0459-1879-13-282.Search in Google Scholar
Kajzer J., Matsui Y., Ishikawa H., Schroeder G., Bosch U., Shearing and bending effects at the knee joint at low-speed lateral loading, SAE Tech. Pap., 1999, DOI: 10.4271/1999-01-0712.Search in Google Scholar
Kajzer J., Schroeder G., Ishikawa H., Matsui Y., Bosch U., Shearing and bending effects at the knee joint at high speed lateral loading, SAE Tech. Pap., 1997, DOI: 10.4271/973326.Search in Google Scholar
Kerrigan J., Subit D., Untaroiu C., Crandall J.R., Pedestrian lower extremity response and injury: a small sedan vs. A large sport utility vehicle, SAE International Journal of Passenger Cars-Mechanical Systems, 2008, 1 (1), 985–1002, DOI: 10.4271/2008-01-1245.Search in Google Scholar
Klein K.F., Hu J., Reed M.P., Schneider L.W., Rupp J.D., Validation of a parametric finite element human femur model, Traffic Inj. Prev., 2017, 18 (4), 420–426, DOI: 10.1080/15389588.2016.1269172.Search in Google Scholar
Klinich K.D., Schneider L.W., Biomechanics of pedestrian injuries related to lower extremity injury related to lower extremity injury assessment tools: a review of the literature and analysis of pedestrian crash database, 2003.Search in Google Scholar
Liu X.R., Xiao S., Sun X.X., Research on lower extremity injury characteristics of elderly pedestrians under different impact loads, Int. J. Crashworthines, 2022, 27 (5), 1287–1297, DOI: 10.1080/13588265.2021.1926846.Search in Google Scholar
Mccalden R.W., Mcgeough J.A., Barker M.B., Court-Brown C.M., Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure, J. Bone Joint Surg. Am., 1993, 75 (8), 1193–1205, DOI: 10.2106/00004623-199308000-00009.Search in Google Scholar
Mo F., Amoux P.J., Avalle M., Scattina A., Semino E., Masson C., Incidences of various passenger vehicle front-end designs on pedestrian lower limb injuries, Int. J. Crashworthines, 2015, 20 (4), 337–347, DOI: 10.1080/13588265.2015.1012879.Search in Google Scholar
Mo F.H., Duan S.Y., Jiang X., Xiao S., Xiao Z., Shi W., Wei K., Investigation of occupant lower extremity injures under various overlap frontal crashes, Int. J. Auto Tech.- Kor., 2018, 19 (2), 301−312, DOI: 10.1007/s12239-018-0029-9.Search in Google Scholar
Mo F., Li F., Behr M., Xiao Z., Zhang G., Du X., A lower limb-pelvis finite element model with 3D active muscles, Ann. Biomed. Eng., 2018, 46, 86–96, DOI: 10.1007/s10439-017-1942-1.Search in Google Scholar
Mo F., Li J., Dan M., Liu T., Behr M., Implementation of controlling strategy in a biomechanical lower limb model with active muscles for coupling multibody dynamics and finite element analysis, J. Biomech., 2019, 91, 51–60, DOI: 10.1016/j.jbiomech.2019.05.001.Search in Google Scholar
Peden M., Scurfield R., Sleet D., Mohan D., Hyder A.A., Jarawan E., Mathers C., Word report on road traffic injury prevention, WHO, 2004.Search in Google Scholar
Saadé J., Cuny S., Labrousse M., Song E., Chauvel C., Chrétien P., Pedestrian injuries and vehicles-related risk factors in car-to-pedestrian frontal collisions, Proceedings of the 2020 IRCOBI Conference Proceedings, Munich, IRCOBI, 2020, 278–289.Search in Google Scholar
Teresiński G., Madro R., Knee joint injuries as a reconstructive factors in car-to-pedestrian accidents, Forensic. Sci. Int., 2001, 124 (1), 74–82, DOI: 10.1016/S0379-0738(01)00569-2.Search in Google Scholar
Tian T., Xiao S., You S., Zhang H., Zhang L., Mo F., Effect of hip flexion angle on lower limb injuries of occupants in autonomous vehicle crashes, Comput. Method Biomec., 2022, 1–14, DOI: 10.1080/10255842.2022.2162338.Search in Google Scholar
Tolea B., Antonya C., Beles H., Assessment of the injury severity of the pedestrian lower limbs at the collision with a vehicle, Proc. of the Annual Session of Scientific papers “IMTOradea 2015”, 2015, 14, 189–192, DOI: 10.15660/AUOFMTE.2015-1.13095.Search in Google Scholar
Wang B.Y., Yang J.K., OTTE D., Wang F., Pedestrian lower extremity injury risk in car-pedestrian collisions, Journal of Virbation and Shock, 2016, 35 (23), 1–5, DOI: 10.13465/j.cnki.jvs.2016.23.001.Search in Google Scholar
Xiao S., Qie Y., Huang J., Influence of restraint load on injury biomechanics in frontal impact based on dummy test, IJST-T. Mech. Eng., 2020, 44, 1065–1075, DOI: 10.1007/s40997-019-00311-1. S. Xiao 108 et al.Search in Google Scholar
Xiao S., You S., Tian T., Wu J., Zhang H., Investigation of lower limb injury under different contact stiffness for drivers during frontal crash, Acta Bioeng. Biomech., 2022, 24 (2), 83–93, DOI: 10.37190/ABB-02057-2022-02.Search in Google Scholar
Yan L., Zhang W., Cao L., Tang J., Dai H., Zhang K., Design of centroid parameters of dummy heads models based on chinese anthropometric dimensions, China Mechanical Engineering, 2018, 29 (07), 787–793, DOI: 10.3969/j.issn.1004-132X.2018.07.006.Search in Google Scholar