This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Atthapreyangkul A., Hoffman M., Pearce G., Effect of geometrical structure variations on the viscoelastic and anisotropic behaviour of cortical bone using multi-scale finite element modelling, J. Mech. Behav. Biomed. Mater., 2021, 113, 104153.Search in Google Scholar
Biswas S., Dasgupta P., Pramanik P., Chanda A., Macro and micro indentation behavior of the cortical part of human femur, Procedia Materials Science, 2014, 5, 2320–2329.Search in Google Scholar
Böhme B., Laurent C., Milis O., Ponthot J.-P., Balligand M., Determination of Canine Long Bone Ultimate Tensile Strain by Digital Image Correlation, J. Orthop. Res. Ther., 2022, 7, 1221, DOI: 10.29011/2575-8241.001221.Search in Google Scholar
Cyganik Ł., Binkowski M., Kokot G., Rusin T., Popik P., Bolechała F., Nowak R., Wróbel Z., John A., Prediction of Young’s modulus of trabeculae in microscale using macroscale’s relationships between bone density and mechanical properties, J. Mech. Behav. Biomed. Mater., 2014, 36, 120–134.Search in Google Scholar
Garcia D., Zysset P.K., Charlebois M., Curnier A., A three-dimensional elastic plastic damage constitutive law for bone tissue, Biomech. Model Mechanobiol., 2009, 8, 149–165.Search in Google Scholar
Ghanbari J., Naghdabadi R., Nonlinear hierarchical multiscale modelling of cortical bone considering its nanoscale microstructure, J. Biomech., 2009, 42, 1560–1565.Search in Google Scholar
Goh S.M., Charalambides M.N., Williams J.G., Determination of the constitutive constants of non-linear viscoelastic materials, Mech. Time-Depend Mater., 2004, 8, 255–268.Search in Google Scholar
Hammer N., Voigt C., Werner M., Hoffmann F., Bente K., Kunze H., Scholz R., Steinke H., Ethanol and formaldehyde fixation irreversibly alter bones’ organic matrix, J. Mech. Behav. Biomed. Mater., 2014, 29, 252–258.Search in Google Scholar
Harrison N.M., McDonnell P.F., Kennedy O.D., O’Brien F.J., McHugh P.E., Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties, J. Biomech., 2008, 41 (11), 2589–2596.Search in Google Scholar
Hong J., Cha H., Park Y., Lee S., Khang G., Kim Y., Elastic moduli and Poisson’s ratios of microscopic human femoral trabeculae, Proceedings of 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, IFMBE16, 2007, 274–277.Search in Google Scholar
Jankowski K., Pawlikowski M., Domański J., Multi-scale constitutive model of human trabecular bone, Continuum Mech. Thermodyn., 2022, DOI: doi.org/10.1007/s00161-022-01161-0.Search in Google Scholar
Jaziri A., Rahmoun J., Naceur H., Drazetic P., Markiewicz E., Multi-scale modelling of the trabecular bone elastoplastic behaviour under compression loading, Eur. Comput. Mech., 2012, 21, 254–269.Search in Google Scholar
Johnson T.P.M., Socrate S., Boyce M.C., A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates, Acta Biomater., 2010, 6, 4073–4080.Search in Google Scholar
Jonas J., Burns J., Abel E.W., Cresswell M.J., Strain J.J., Paterson C.R., A technique for the tensile testing of demineralised bone, J. Biomech., 1993, 26, 271–276.Search in Google Scholar
Klinger S., Greinwald M., Augat P., Hollensteiner M., Mechanical and morphometric characterization of custom-made trabecular bone surrogates, J. Mech. Behav. Biomed. Mater., 2022, 129, 105146.Search in Google Scholar
Linden J.C., Birkenhager-Frenkel D.H., Verhaar J.A.N., Weinans H., Trabecular bone’s mechanical properties are affected by its non-uniform mineral distribution, J. Biomech., 2001, 34, 1573–1580.Search in Google Scholar
Makuch A.M., Skalski K.R., Human cancellous bone mechanical properties and penetrator geometry in nanoindentation tests, Acta Bioeng. Biomech., 2018, 20 (3), 153–164.Search in Google Scholar
Mooney M., A theory of large elastic deformation, J. Appl. Phys., 1940, 11, 582–592.Search in Google Scholar
Natali A.N., Carniel E.L., Pavan P.G., Constitutive modelling of inelastic behaviour of cortical bone, Med. Eng. Phys., 2008, 30, 905–912.Search in Google Scholar
Olesiak S.E., Oyen M.L., Ferguson V.L., Viscous-elasticplastic behavior of bone using Berkovich nanoindentation, Mech. Time-Depend. Mater., 2010, 14, 111–124.Search in Google Scholar
Oliver W.C., Pharr G.M., An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, 7 (6), 1564–1583.Search in Google Scholar
Oyen M.L., Sensitivity of polymer nanoindentation creep measurements to experimental variables, Acta Mater., 2007, 55, 3633–3639.Search in Google Scholar
Oyen M.L., Cook R.F., Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials, J. Mater. Res., 2003, 18, 139–150.Search in Google Scholar
Pawlikowski M., Non-linear approach in visco-hyperelastic constitutive modelling of polyurethane nanocomposite, Mech. Time-Depend. Mater., 2013, 18, 1–20.Search in Google Scholar
Pawlikowski M., Barcz K., Non-linear viscoelastic constitutive model for bovine cortical bone tissue, Biocybern. Biomed. Eng., 2016, 36, 491–498.Search in Google Scholar
Pawlikowski M., Jankowski K., Skalski K., New microscale constitutive model of human trabecular bone based on depth sensing indentation technique, J. Mech. Behav. Biomed. Mater., 2018, 85, 162–169.Search in Google Scholar
Pawlikowski M., Skalski K., Sowiński T., Hyper-elastic modelling of intervertebral disc polyurethane implant, Acta Bioeng. Biomech., 2013, 15, 43–50.Search in Google Scholar
Porter D., Pragmatic multiscalemodelling of bone as a natural hybrid nanocomposite, Mater. Sci. Eng., 2004, A 365, 38–45.Search in Google Scholar
Rahmoun J., Naceur H., Morvan H., Drazetic P., Fontaine C., Mazeran P.E., Experimental characterization and micromechanical modeling of the elastic response of the human humerus under bending impact, Mater. Sci. Eng., 2020, C 117, 111276.Search in Google Scholar
Rho J.Y., Tsui T.Y., Pharr G.M., Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials, 1997, 18, 1325–1330.Search in Google Scholar
Sakai M., Shimizu S., Indentation rheometry for glass-forming materials, J. Non-Crystalline Solids, 2001, 282, 236–247.Search in Google Scholar
Shimizu S., Yanagimoto T., Sakai M., Pyramidal indentation load–depth curve of viscoelastic materials, J. Mater. Res., 1999, 14, 4075–4086.Search in Google Scholar
Smith L.J., Schirer J.P., Fazzalari N.L., The role of mineral content in determining the micromechanical properties of discrete trabecular bone remodeling packets, J. Biomech., 2010, 43, 3144–3149.Search in Google Scholar
Stocchero M., Jinno Y., Toia M., Jimbo R., Lee C., Yamaguchi S., Imazato S., Becktor J.P., In silico multi-scale analysis of remodeling peri-implant cortical bone: a comparison of two types of bone structures following an undersized and non-undersized technique, J. Mech. Behav. Biomed. Mater., 2020, 103, 103598.Search in Google Scholar
Turner C.H., Wang T., Burr D.B., Shear Strength and Fatigue Properties of Human Cortical Bone Determined from Pure Shear Tests, Calcif Tissue Int., 2001, 69 (6), 373–378.Search in Google Scholar
Unger S., Blauth M., Schmoelz W., Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone, Bone, 2010, 47, 1048–1053.Search in Google Scholar
Wofram U., Wilke H.-J., Zysset P.K., Rehydration of vertebral trabecular bone: Influences on its anisotropy, its stiffness and the indentation work with a view to age, gender and vertebral level, Bone, 2010, 46, 348–354.Search in Google Scholar
Wu D., Isaksson P., Ferguson S.J., Persson C., Young’s modulus of trabecular bone at the tissue level: A review, Acta Biomater., 2018, 78, 1–12.Search in Google Scholar
Zlámal P., Jiroušek O., Kytyr D., Doktor T., Indirect determination of material model parameters for single trabecula based on nanoindentation and three-point bending test, Eng. Mech., 2012, 1611–1620.Search in Google Scholar
Zysset P.K., Indentation of bone tissue: a short review, Osteoporos. Int., 2009, 20, 1049–1055.Search in Google Scholar