Accesso libero

Mechanical properties of the porcine pericardium extracellular matrix cross-linked with glutaraldehyde and tannic acid

, ,  e   
25 gen 2023
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Aguiari P., Fiorese M., Iop L., Gerosa G., Bagno A., Mechanical testing of pericardium for manufacturing prosthetic heart valves, Interact. Cardiovasc. Thorac. Surg., 2016, 22 (1), 72–84, DOI: 10.1093/icvts/ivv282. Search in Google Scholar

Arbeiter D., Grabow N., Wessarges Y., Sternberg K., Schmitz K.P., Suitability of porcine pericardial tissue for heart valve engineering: Biomechanical properties, Biomed. Tech. (Berl.), 2012, 57 (Suppl. 1), 882–883, DOI: 10.1515/bmt-2012-4332. Search in Google Scholar

Baldwin A., Booth B.W., Biomedical applications of tannic acid, J. Biomater. Appl., 2022, 36 (8), 1503–1523, DOI: 10.1177/08853282211058099. Search in Google Scholar

Bondarenko N.A., Surovtseva M.A., Lykov P., Kim I.I., Zhuravleva I.Y., Poveschenko V., Cytotoxicity of xenogeneic pericardium preserved by epoxy cross-linking agents, Sovrem. Tehnol. v Med., 2021, 13 (4), 27–33, DOI: 10.17691/stm2021.13.4.03. Search in Google Scholar

Braga-Vilela A.S., Pimentel E.R., Marangoni S., Toyama M.H., Campos Vidal B. de, Extracellular matrix of porcine pericardium: Biochemistry and collagen architecture, J. Membr. Biol., 2008, 221 (1), 15–25, DOI: 10.1007/s00232-007-9081-5. Search in Google Scholar

Caballero A., Sulejmani F., Martin C., Pham T., Sun W., Evaluation of transcatheter heart valve biomaterials: Biomechanical characterization of bovine and porcine pericardium, J. Mech. Behav. Biomed. Mater., 2017, 75, 486–494, DOI: 10.1016/j.jmbbm.2017.08.013. Search in Google Scholar

Chuong C.J., Fung Y.C., Three-Dimensional Stress Distribution in Arteries, J. Biomech. Eng., 1983, 105 (3), 268–274, DOI: 10.1115/1.3138417. Search in Google Scholar

Cohn D., Younes H., Milgarter E., Uretzky G., Mechanical behaviour of isolated pericardium: species, isotropy, strain rate and collagenase effect on pericardial tissue, Clin. Mater., 1987, 2 (2), 115–124, DOI: 10.1016/0267-6605(87)90030-8. Search in Google Scholar

Courtman D.W., Pereira C.A., Kashef V., Donna M., Lee J.M., Wilson G.J., Development of a pericardial acellular matrix biomaterial: Biochemical and mechanical effects of cell extraction, J. Biomed. Mater. Res., 1994, 28 (6), 655–666, DOI: 10.1002/jbm.820280602. Search in Google Scholar

Cwalina B., Turek A., Jastrzębska M., Fluder A., Kostka P., Stress changes in pericardium tissue during its modification with tannic acid, Inż. Biomat., 2002, 5 (23–25), 67–70. Search in Google Scholar

Cwalina B., Turek A., Nożyński J., Jastrzębska M., Nawrat Z., Structural changes in pericardium tissue modified with tannic acid, Int. J. Artif. Organs, 2005, 28 (6), 648–653, DOI: 10.1177/039139880502800614. Search in Google Scholar

Debelle L., Alix A.J.P., The structures of elastins and their function, Biochimie, 1999, 81 (10), 981–994, DOI: 10.1016/S0300-9084(99)00221-7. Search in Google Scholar

Ferrans V., Hilbert S., Jones M., Biomaterials. Replacement Cardiac Valves, 1991. Search in Google Scholar

Grabenwöger M., Sider J., Fitzal F., Zelenka C., Windberger U., Grimm M., i wsp., Impact of glutaraldehyde on calcification of pericardial bioprosthetic heart valve material, Ann. Thorac Surg., 62 (3), 772–777, 1996. Search in Google Scholar

Isenburg J.C., Simionescu D.T., Vyavahare N.R., Tannic acid treatment enhances biostability and reduces calcification of glutaraldehyde fixed aortic wall, Biomaterials, 2005, 26 (11), 1237–1245, DOI: 10.1016/j.biomaterials.2004.04.034. Search in Google Scholar

Isenburg J.C., Simionescu D.T., Vyavahare N.R., Elastin stabilization in cardiovascular implants: Improved resistance to enzymatic degradation by treatment with tannic acid, Biomaterials, 2004, 25 (16), 3293–3302, DOI: 10.1016/j.biomaterials.2003.10.001. Search in Google Scholar

Jastrzębska M., Mróz I., Barwiński B., Zalewska-Rejdak J., Turek A., Cwalina B., Supramolecular structure of human aortic valve and pericardial xenograft material: Atomic force microscopy study, J. Mater Sci.: Mater Med., 2008, 19 (1), 249–256, DOI: 10.1007/s10856-006-0049-2. Search in Google Scholar

Jastrzębska M., Wrzalik R., Kocot A., Zalewska-Rejdak J., Cwalina B., Hydration of glutaraldehyde-fixed pericardium tissue: Raman spectroscopic study, J. Raman Spectrosc., 2003, 34 (6), 424–431, DOI: 10.1002/jrs.1016. Search in Google Scholar

Jastrzębska M., Zalewska-Rejdak J., Wrzalik R., Kocot A., Mróz I., Barwiński B. et al., Tannic acid-stabilized pericardium tissue: IR spectroscopy, atomic force microscopy, and dielectric spectroscopy investigations, J. Biomed. Mater Res. A, 2006, 78A (1), 148–156, DOI: 10.1002/jbm.a.30717. Search in Google Scholar

Kobielarz M., Effect of collagen fibres and elastic lamellae content on the mechanical behaviour of abdominal aortic aneurysms, Acta Bioeng. Biomech., 2020, 22 (3), 9–21, DOI: 10.37190/ABB-01580-2020-02. Search in Google Scholar

Leikina E., Mertts M. v., Kuznetsova N., Leikin S., Type I collagen is thermally unstable at body temperature, Proc. Natl. Acad. Sci. USA, 2002, 99 (3), 1314–1318, DOI: 10.1073/pnas.032307099. Search in Google Scholar

Meyer M., Processing of collagen based biomaterials and the resulting materials properties, Biomed. Eng. Online, 2019, 18, 24, DOI: 10.1186/s12938-019-0647-0. Search in Google Scholar

Naimark W.A., Lee J.M., Limeback H., Cheung D.T., Correlation of structure and viscoelastic properties in the pericardia of four mammalian species, Am. J. Physiol. – Heart Circ. Physiol., 1992, 263 (4), H1095–H1106, DOI: 10.1152/ajpheart.1992.263.4.h1095. Search in Google Scholar

Ogden R.W., Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. A Math. Phys. Eng. Sci., 1972, 326 (1567), 565–584, DOI: 10.1098/rspa.1972.0026. Search in Google Scholar

Olde Damink L.H.H., Dijkstra P.J., van Luyn M.J.A., van Wachem P.B., Nieuwenhuis P., Feijen J., Glutaraldehyde as a cross-linking agent for collagen-based biomaterials, J. Mater. Sci. Mater Med., 1995, 6 (8), 460–472, DOI: 10.1007/BF00123371. Search in Google Scholar

Rosenthal J.T., Shaw B.W., Hardesty R.L., Principles of multiple organ procurement from cadaver donors, Ann. Surg., 1983, 198 (5), 617–621, DOI: 10.1097/00000658-198311000-00010. Search in Google Scholar

Schoen F.J., Levy R.J., Calcification of tissue heart valve substitutes: Progress toward understanding and prevention, Ann. Thorac. Surg., 2005, 79 (3), 1072–1080, DOI: 10.1016/j.athoracsur.2004.06.033. Search in Google Scholar

Shabetai R., The pericardium, Kluwer Academic Publishers, 2003. Search in Google Scholar

Shah S.R., Vyavahare N.R., The effect of glycosaminoglycan stabilization on tissue buckling in bioprosthetic heart valves, Biomaterials, 2008, 29 (11), 1645–1653, DOI: 10.1016/j.biomaterials.2007.12.009. Search in Google Scholar

Simionescu D., Simionescu A., Deac R., Mapping of glutaraldehyde- treated bovine pericardium and tissue selection for bioprosthetic heart valves, J. Biomed. Mater. Res., 1993, 27 (6), 697–704, DOI: 10.1002/jbm.820270602. Search in Google Scholar

Singhal P., Luk A., Butany J., Bioprosthetic Heart Valves: Impact of implantation on biomaterials, Int. Sch. Res. Not., 2013, 2013. 728791, DOI: 10.5402/2013/728791. Search in Google Scholar

Sionkowska A., Kaczmarek B., Lewandowska K., Modification of collagen and chitosan mixtures by the addition of tannic acid, J. Mol. Liq., 2014, 199, 318–323, DOI: 10.1016/j.molliq.2014.09.028. Search in Google Scholar

Turek A., Cwalina B., Kobielarz M., Radioisotopic investigation of crosslinking density in bovine pericardium used as a biomaterial, Nukleonika, 2013, 58 (4), 511–517. Search in Google Scholar

Umashankar P.R., Mohanan P.V., Kumari T.V., Glutaraldehyde treatment elicits toxic response compared to decellularization in bovine pericardium, Toxicol. Int., 2012, 19 (1), 51–58, DOI: 10.4103/0971-6580.94513. Search in Google Scholar

Velmurugan P., Singam E.R.A., Jonnalagadda R.R., Subramanian V., Investigation on interaction of tannic acid with type i collagen and its effect on thermal, enzymatic, and conformational stability for tissue engineering applications, Biopolymers, 2014, 101 (5), 471–483, DOI: 10.1002/bip.22405. Search in Google Scholar

Walrafen G.E., Chu Y.C., Nature of collagen-water hydration forces: A problem in water structure, Chem. Phys., 2000, 258 (2–3), 427–446, DOI: 10.1016/S0301-0104(00)00072-0. Search in Google Scholar

Wang D., Jiang H., Li J., Zhou J.Y., Hu S.S., Mitigated calcification of glutaraldehyde-fixed bovine pericardium by Tannic acid in rats, Chin. Med. J., 2008, 121 (17), 1675–1679, DOI: 10.1097/00029330-200809010-00017. Search in Google Scholar

Zilla P., Weissenstein C., Human P., Dower T., Von Oppell U.O., High glutaraldehyde concentrations mitigate bioprosthetic root calcification in the sheep model, Ann. Thorac. Surg., 2000, 70 (6), 2091–2095, DOI: 10.1016/S0003-4975(00)02011-7. Search in Google Scholar

Zilla P., Zhang Y., Human P., Koen W., von Oppell U., Improved ultrastructural preservation of bioprosthetic tissue, J. Heart Valve Dis., 1997, 6 (5), 492–501. Search in Google Scholar

Zouhair S., Sasso E.D., Tuladhar S.R., Fidalgo C., Vedovelli L., Filippi A., A comprehensive comparison of bovine and porcine decellularized pericardia: New insights for surgical applications, Biomolecules, 2020, 10 (3), 371, DOI: 10.3390/biom10030371. Search in Google Scholar