Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and TechnologyWrocław, Poland
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Aguiari P., Fiorese M., Iop L., Gerosa G., Bagno A., Mechanical testing of pericardium for manufacturing prosthetic heart valves, Interact. Cardiovasc. Thorac. Surg., 2016, 22 (1), 72–84, DOI: 10.1093/icvts/ivv282.Search in Google Scholar
Arbeiter D., Grabow N., Wessarges Y., Sternberg K., Schmitz K.P., Suitability of porcine pericardial tissue for heart valve engineering: Biomechanical properties, Biomed. Tech. (Berl.), 2012, 57 (Suppl. 1), 882–883, DOI: 10.1515/bmt-2012-4332.Search in Google Scholar
Baldwin A., Booth B.W., Biomedical applications of tannic acid, J. Biomater. Appl., 2022, 36 (8), 1503–1523, DOI: 10.1177/08853282211058099.Search in Google Scholar
Bondarenko N.A., Surovtseva M.A., Lykov P., Kim I.I., Zhuravleva I.Y., Poveschenko V., Cytotoxicity of xenogeneic pericardium preserved by epoxy cross-linking agents, Sovrem. Tehnol. v Med., 2021, 13 (4), 27–33, DOI: 10.17691/stm2021.13.4.03.Search in Google Scholar
Braga-Vilela A.S., Pimentel E.R., Marangoni S., Toyama M.H., Campos Vidal B. de, Extracellular matrix of porcine pericardium: Biochemistry and collagen architecture, J. Membr. Biol., 2008, 221 (1), 15–25, DOI: 10.1007/s00232-007-9081-5.Search in Google Scholar
Caballero A., Sulejmani F., Martin C., Pham T., Sun W., Evaluation of transcatheter heart valve biomaterials: Biomechanical characterization of bovine and porcine pericardium, J. Mech. Behav. Biomed. Mater., 2017, 75, 486–494, DOI: 10.1016/j.jmbbm.2017.08.013.Search in Google Scholar
Chuong C.J., Fung Y.C., Three-Dimensional Stress Distribution in Arteries, J. Biomech. Eng., 1983, 105 (3), 268–274, DOI: 10.1115/1.3138417.Search in Google Scholar
Cohn D., Younes H., Milgarter E., Uretzky G., Mechanical behaviour of isolated pericardium: species, isotropy, strain rate and collagenase effect on pericardial tissue, Clin. Mater., 1987, 2 (2), 115–124, DOI: 10.1016/0267-6605(87)90030-8.Search in Google Scholar
Courtman D.W., Pereira C.A., Kashef V., Donna M., Lee J.M., Wilson G.J., Development of a pericardial acellular matrix biomaterial: Biochemical and mechanical effects of cell extraction, J. Biomed. Mater. Res., 1994, 28 (6), 655–666, DOI: 10.1002/jbm.820280602.Search in Google Scholar
Cwalina B., Turek A., Jastrzębska M., Fluder A., Kostka P., Stress changes in pericardium tissue during its modification with tannic acid, Inż. Biomat., 2002, 5 (23–25), 67–70.Search in Google Scholar
Cwalina B., Turek A., Nożyński J., Jastrzębska M., Nawrat Z., Structural changes in pericardium tissue modified with tannic acid, Int. J. Artif. Organs, 2005, 28 (6), 648–653, DOI: 10.1177/039139880502800614.Search in Google Scholar
Debelle L., Alix A.J.P., The structures of elastins and their function, Biochimie, 1999, 81 (10), 981–994, DOI: 10.1016/S0300-9084(99)00221-7.Search in Google Scholar
Ferrans V., Hilbert S., Jones M., Biomaterials. Replacement Cardiac Valves, 1991.Search in Google Scholar
Grabenwöger M., Sider J., Fitzal F., Zelenka C., Windberger U., Grimm M., i wsp., Impact of glutaraldehyde on calcification of pericardial bioprosthetic heart valve material, Ann. Thorac Surg., 62 (3), 772–777, 1996.Search in Google Scholar
Isenburg J.C., Simionescu D.T., Vyavahare N.R., Tannic acid treatment enhances biostability and reduces calcification of glutaraldehyde fixed aortic wall, Biomaterials, 2005, 26 (11), 1237–1245, DOI: 10.1016/j.biomaterials.2004.04.034.Search in Google Scholar
Isenburg J.C., Simionescu D.T., Vyavahare N.R., Elastin stabilization in cardiovascular implants: Improved resistance to enzymatic degradation by treatment with tannic acid, Biomaterials, 2004, 25 (16), 3293–3302, DOI: 10.1016/j.biomaterials.2003.10.001.Search in Google Scholar
Jastrzębska M., Mróz I., Barwiński B., Zalewska-Rejdak J., Turek A., Cwalina B., Supramolecular structure of human aortic valve and pericardial xenograft material: Atomic force microscopy study, J. Mater Sci.: Mater Med., 2008, 19 (1), 249–256, DOI: 10.1007/s10856-006-0049-2.Search in Google Scholar
Jastrzębska M., Wrzalik R., Kocot A., Zalewska-Rejdak J., Cwalina B., Hydration of glutaraldehyde-fixed pericardium tissue: Raman spectroscopic study, J. Raman Spectrosc., 2003, 34 (6), 424–431, DOI: 10.1002/jrs.1016.Search in Google Scholar
Jastrzębska M., Zalewska-Rejdak J., Wrzalik R., Kocot A., Mróz I., Barwiński B. et al., Tannic acid-stabilized pericardium tissue: IR spectroscopy, atomic force microscopy, and dielectric spectroscopy investigations, J. Biomed. Mater Res. A, 2006, 78A (1), 148–156, DOI: 10.1002/jbm.a.30717.Search in Google Scholar
Kobielarz M., Effect of collagen fibres and elastic lamellae content on the mechanical behaviour of abdominal aortic aneurysms, Acta Bioeng. Biomech., 2020, 22 (3), 9–21, DOI: 10.37190/ABB-01580-2020-02.Search in Google Scholar
Leikina E., Mertts M. v., Kuznetsova N., Leikin S., Type I collagen is thermally unstable at body temperature, Proc. Natl. Acad. Sci. USA, 2002, 99 (3), 1314–1318, DOI: 10.1073/pnas.032307099.Search in Google Scholar
Meyer M., Processing of collagen based biomaterials and the resulting materials properties, Biomed. Eng. Online, 2019, 18, 24, DOI: 10.1186/s12938-019-0647-0.Search in Google Scholar
Naimark W.A., Lee J.M., Limeback H., Cheung D.T., Correlation of structure and viscoelastic properties in the pericardia of four mammalian species, Am. J. Physiol. – Heart Circ. Physiol., 1992, 263 (4), H1095–H1106, DOI: 10.1152/ajpheart.1992.263.4.h1095.Search in Google Scholar
Ogden R.W., Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. A Math. Phys. Eng. Sci., 1972, 326 (1567), 565–584, DOI: 10.1098/rspa.1972.0026.Search in Google Scholar
Olde Damink L.H.H., Dijkstra P.J., van Luyn M.J.A., van Wachem P.B., Nieuwenhuis P., Feijen J., Glutaraldehyde as a cross-linking agent for collagen-based biomaterials, J. Mater. Sci. Mater Med., 1995, 6 (8), 460–472, DOI: 10.1007/BF00123371.Search in Google Scholar
Rosenthal J.T., Shaw B.W., Hardesty R.L., Principles of multiple organ procurement from cadaver donors, Ann. Surg., 1983, 198 (5), 617–621, DOI: 10.1097/00000658-198311000-00010.Search in Google Scholar
Schoen F.J., Levy R.J., Calcification of tissue heart valve substitutes: Progress toward understanding and prevention, Ann. Thorac. Surg., 2005, 79 (3), 1072–1080, DOI: 10.1016/j.athoracsur.2004.06.033.Search in Google Scholar
Shah S.R., Vyavahare N.R., The effect of glycosaminoglycan stabilization on tissue buckling in bioprosthetic heart valves, Biomaterials, 2008, 29 (11), 1645–1653, DOI: 10.1016/j.biomaterials.2007.12.009.Search in Google Scholar
Simionescu D., Simionescu A., Deac R., Mapping of glutaraldehyde- treated bovine pericardium and tissue selection for bioprosthetic heart valves, J. Biomed. Mater. Res., 1993, 27 (6), 697–704, DOI: 10.1002/jbm.820270602.Search in Google Scholar
Singhal P., Luk A., Butany J., Bioprosthetic Heart Valves: Impact of implantation on biomaterials, Int. Sch. Res. Not., 2013, 2013. 728791, DOI: 10.5402/2013/728791.Search in Google Scholar
Sionkowska A., Kaczmarek B., Lewandowska K., Modification of collagen and chitosan mixtures by the addition of tannic acid, J. Mol. Liq., 2014, 199, 318–323, DOI: 10.1016/j.molliq.2014.09.028.Search in Google Scholar
Turek A., Cwalina B., Kobielarz M., Radioisotopic investigation of crosslinking density in bovine pericardium used as a biomaterial, Nukleonika, 2013, 58 (4), 511–517.Search in Google Scholar
Umashankar P.R., Mohanan P.V., Kumari T.V., Glutaraldehyde treatment elicits toxic response compared to decellularization in bovine pericardium, Toxicol. Int., 2012, 19 (1), 51–58, DOI: 10.4103/0971-6580.94513.Search in Google Scholar
Velmurugan P., Singam E.R.A., Jonnalagadda R.R., Subramanian V., Investigation on interaction of tannic acid with type i collagen and its effect on thermal, enzymatic, and conformational stability for tissue engineering applications, Biopolymers, 2014, 101 (5), 471–483, DOI: 10.1002/bip.22405.Search in Google Scholar
Walrafen G.E., Chu Y.C., Nature of collagen-water hydration forces: A problem in water structure, Chem. Phys., 2000, 258 (2–3), 427–446, DOI: 10.1016/S0301-0104(00)00072-0.Search in Google Scholar
Wang D., Jiang H., Li J., Zhou J.Y., Hu S.S., Mitigated calcification of glutaraldehyde-fixed bovine pericardium by Tannic acid in rats, Chin. Med. J., 2008, 121 (17), 1675–1679, DOI: 10.1097/00029330-200809010-00017.Search in Google Scholar
Zilla P., Weissenstein C., Human P., Dower T., Von Oppell U.O., High glutaraldehyde concentrations mitigate bioprosthetic root calcification in the sheep model, Ann. Thorac. Surg., 2000, 70 (6), 2091–2095, DOI: 10.1016/S0003-4975(00)02011-7.Search in Google Scholar
Zilla P., Zhang Y., Human P., Koen W., von Oppell U., Improved ultrastructural preservation of bioprosthetic tissue, J. Heart Valve Dis., 1997, 6 (5), 492–501.Search in Google Scholar
Zouhair S., Sasso E.D., Tuladhar S.R., Fidalgo C., Vedovelli L., Filippi A., A comprehensive comparison of bovine and porcine decellularized pericardia: New insights for surgical applications, Biomolecules, 2020, 10 (3), 371, DOI: 10.3390/biom10030371.Search in Google Scholar