Accesso libero

Novel curve fitting method based on constrained optimization for the modelling of human brain aneurysms using Mooney–Rivlin hyperelastic materials in the entire range of deformations til rupture

 e   
22 lug 2022
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Bazaraa M.S., Sherali H.D., Shetty C.M., Nonlinear Optimization Theory and Algorithms, John Wiley & Sons, New York, NY, USA, 1993. Search in Google Scholar

Bazilevs Y., Calo V.M., Zhang Y., Hughes T.J.R., Isogeometric fluid–structure interaction analysis with applications to arterial blood flow, Comput. Mech., 2006, 38, 310–322, DOI: 10.1007/s00466-006-0084-3. Search in Google Scholar

Benra F.-K., Dohmen H.J., Pei J., Schuster S., Wan B., A Comparison of One-Way and Two-Way Coupling Methods for Numerical Analysis of Fluid-Structure Interactions, J. Appl. Math., 2011, Article ID 853560, 16 pp., DOI: 10.1155/2011/853560. Search in Google Scholar

Chuong C.J., Fung Y.C., Three-dimensional stress distribution in arteries, J. Biomech. Eng., 1983, 105 (3), 268–274. DOI: 10.1115/1.3138417. Search in Google Scholar

Cosentino F., Agnese V., Raffa G.M., Gentile G., Bellavia D., Zingales M., Pilato M., Pasta S., The role of material properties in ascending thoracic aortic aneurysms, Comput. Biol. Med., 2019, 109, 70–78, DOI: 10.1016/j.compbiomed.2019.04.022. Search in Google Scholar

Delfino A., Analysis of stress field in a model of the human carotid bifurcation, Swiss Federal Institute of Technology Lausanne, 1996, DOI: 10.5075/epfl-thesis-1599. Search in Google Scholar

Delfino A., Stergiopulos N., Moore J.E., Meister J.J., Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation, J. Biomech., 1997, 30, 777–786, DOI: 10.1016/S0021-9290(97)00025-0. Search in Google Scholar

Fung Y.C., Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York 1993. Search in Google Scholar

Fung Y.C., Fronek K., Patitucci P., Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Physiol. – Heart C., 1979, 237, H620–H631. DOI: 10.1152/ajpheart.1979.237.5.H620. Search in Google Scholar

Holzapfel G.A., Determination of material models for arterial walls from uniaxial extension tests and histological structure, J. Theor. Biol., 2006, 238, 290–302. DOI: 10.1016/j.jtbi.2005.05.006. Search in Google Scholar

Holzapfel G.A., Gasser T.C., Ogden R.W., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity, 2000, 61, 1–48, DOI: 10.1023/A:1010835316564. Search in Google Scholar

Holzapfel G.A., Ogden R.W., Constitutive modelling of arteries, P. Roy. Soc. A – Math. Phy., 2010, 466, 1551–1597, DOI: 10.1098/rspa.2010.0058. Search in Google Scholar

Holzapfel G.A., Sommer G., Gasser C.T., Regitnig P., Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling, Am. J. Physiol. – Heart C., 2005, 289, H2048–H2058. DOI: 10.1152/ajpheart.00934.2004. Search in Google Scholar

Holzapfel G.A., Weizsäcker H.W., Biomechanical behavior of the arterial wall and its numerical characterization, Comput. Biol. Med., 1998, 28, 377–392. DOI: 10.1016/S0010-4825(98)00022-5. Search in Google Scholar

Horvath T., Osztovits J., Pintér A. et al., Genetic impact dominates over environmental effects in development of carotid artery stiffness: a twin study, Hypertens. Res., 2014, 37, 88–93. DOI:10.1038/hr.2013.133. Search in Google Scholar

Horvath T., Pinter A., Kollai M., Carotid artery stiffness is not related to endothelial function in young healthy subjects, Auton. Neurosci., 2012, 166, 85–88, DOI: 10.1016/j.autneu.2011.09.004. Search in Google Scholar

Hou G., Wang J., Layton A., Numerical Methods for Fluid – Structure Interaction – A Review, Commun. Comput. Phys., 2012, 12, 2, 337–377, DOI: 10.4208/cicp.291210.290411s. Search in Google Scholar

Hudetz A.G., Monos E., A viscoelastic model of mechanically induced and spontaneous contractions of vascular smooth muscle. Acta Physiol. Hung., 1985, 65, 109–123, pmid:3984755. Search in Google Scholar

Karush W., Minima of functions of several variables with inequalities as side conditions, M.Sc. dissertation, Department of Mathematics, University of Chicago, 1939. Search in Google Scholar

Kobielarz M., Jankowski L.J., Experimental characterization of the mechanical properties of the abdominal aortic aneurysm wall under uniaxial tension, J. Theor. App. Mech.– Pol., 2013, 51 (4), 949–958. Search in Google Scholar

Kuhn H.W., Tucker A.W., Nonlinear programming, [in:] J. Neyman (Ed.), Proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 1951, 481–492. Search in Google Scholar

László A., Pintér A., Horváth T. et al., Impaired carotid artery elastic function in patients with tetralogy of Fallot, Heart Vessels, 2011, 26, 542–548, DOI: 10.1007/s00380-010-0095-z. Search in Google Scholar

Laurence D.W., Homburg H., Yan F. et al., A pilot study on biaxial mechanical, collagen microstructural, and morphological characterizations of a resected human intracranial aneurysm tissue, Sci. Rep.-UK, 2021, 11, 3525, DOI: 10.1038/s41598-021-82991-x. Search in Google Scholar

Ming-Chen H., Kamensky D., Bazilevs Y., Sacks M.S., Hughes T.J.R., Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput. Mech., 2014, 54, 1055–1071. DOI: 10.1007/s00466-014-1059-4. Search in Google Scholar

Monos E., A nagy artériák biomechanikai tulajdonságai. Génsebészet, biomechanika, ökológia. (9) A biológia aktuális problémái (Biomechanical properties of large arteries. Genetic surgery, biomechanics, ecology. (9) Actual problems in biology), Medicina Könyvkiadó, Budapest 1977 (in Hungarian). Search in Google Scholar

Monos E., Szűcs B., Optimization of hemodynamic energy expenditure in the arterial system, Obes. Res., 1995, 3, 811S–818S, DOI: 10.1002/j.1550-8528.1995.tb00504.x (Invited review). Search in Google Scholar

Mooney M., A theory of large elastic deformation, J. Appl. Phys., 1940, 11, 582–592, DOI: 10.1063/1.1712836. Search in Google Scholar

Morel S., Karol A., Graf V. et al., Sex-related differences in wall remodeling and intraluminal thrombus resolution in a rat saccular aneurysm model, J. Neurosurg., 2021, 134, 58–71, DOI: 10.3171/2019.9.JNS191466. Search in Google Scholar

Noble C., Carlson K.D., Neumann E., Dragomir-Daescu D., Erdemir A., Lerman A., Young M., Patient specific characterization of artery and plaque material properties in peripheral artery disease, J. Mech. Behav. Biomed., 2020, 101, 103453, DOI: 10.1016/j.jmbbm.2019.103453. Search in Google Scholar

Ogden R.W., Nearly isochoric elastic deformations: application to rubberlike solids, J. Mech. Phys. Solids, 1978, 26, 37–57. Search in Google Scholar

Ogden R.W., Schulze-Bauer C.A.J., Phenomenological and structural aspects of the mechanical response of arteries, [in:] J. Casey, G. Bao (Eds.), Mechanics in Biology, The American Society of Mechanical Engineers, 2000, Vol. AMD–Vol. 242/BED–Vol. 46, 125–140,. Search in Google Scholar

Prendergast P.J., Lally C., Daly S., Reid A.J., Lee T.C., Quinn D., Dolan F., Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finiteelement modelling, J. Biomech. Eng. – T. ASME, 2003, 125, 692–699, DOI: 10.1115/1.1613674. Search in Google Scholar

Rhodin J.A.G., Architecture of the vessel wall, [in:] H.V. Sparks, Jr., D.F. Bohr, A.D. Somlyo, S.R. Geiger (Eds.), Handbook of Physiology, The Cardiovascular System, American Physiologial Society, 1980, Vol. 2, 1–31. Search in Google Scholar

Rivlin R.S., Large elastic deformations of isotropic materials. IV. Further developments of the general theory, Philos. T. Roy. Soc. A, 1948, 241, 379–397, DOI: 10.1098/rsta.1948.0024. Search in Google Scholar

[35] Silver F.H., Christiansen D.L., Buntin C.M., Mechanical properties of the aorta: a review, Crit. Rev. Biomed. Eng., 1989, 17, 323–358, pmid:2676341. Search in Google Scholar

Skowronek R., Kobek M., Jankowski Z. et al., Traumatic basal subarachnoid haemorrhage or ruptured brain aneurysm in 16-year-old boy? – case report. Archiwum Medycyny Sądowej i Kryminologii (Archives of Forensic Medicine and Criminology), 2016, 66 (1), 32–40. DOI: 10.5114/amsik.2016.62333. Search in Google Scholar

Takamizawa K., Hayashi K., Strain energy density function and uniform strain hypothesis for arterial mechanics, J. Biomech., 1987, 20, 7–17, DOI: 10.1016/0021-9290(87)90262-4. Search in Google Scholar

Tang A.M., Bakhsheshian J., Ding L. et al., Nonindex Readmission After Ruptured Brain Aneurysm Treatment Is Associated with Higher Morbidity and Repeat Readmission, World Neurosurg., 2019, 130, e753-e759, DOI: https://doi.org/10.1016/j.wneu.2019.06.214. Search in Google Scholar

Tezduyar T.E., Sathe S., Schwaab M., Conklin B.S., Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique, Int. J. Numer. Meth. Fluids, 2008, 57, 601–629, DOI: 10.1002/fld.1633. Search in Google Scholar

Torii R., Oshima M., Kobayashi T., Takagi K., Tezduyar T.E., Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes, Comput. Methods Appl. Mech. Eng., 2009, 198, 3613–3621, DOI: 10.1016/j.cma.2008.08.020. Search in Google Scholar

Tóth B., A vérben áramló vörösvértestek és az érfal mechanikai kölcsönhatása (Analysis of the mechanical interaction between the red blood cells and the blood vessels), PhD dissertation, Budapest University of Technology and Economics, 2011 (in Hungarian). Search in Google Scholar

Tóth M., Nádasy G., Nyáry I., Kerényi T., Monos E., Agyi aneurizmás betegek intra-és extracranialis artériáinak biomechanikai tulajdonságai (Biomechanical properties of intracranialis and extracranialis arteries of brain aneurysm patients), Érbetegségek, 1996, 3, 1–8 (in Hungarian). Search in Google Scholar

Tóth M., Nádasy G., Nyáry I., Kerényi T., Orosz M., Molnárka G., Monos E., A humán agyi aneurizmazsákok sztérikusan inhomogén viszkoelasztikus viselkedése (Steric inhomogeneous viscoelastic behaviour of brain aneurysms), Érbetegségek, 1997, 4, 1–12 (in Hungarian). Search in Google Scholar

Upadhyay K., Subhash G., Spearot D., Thermodynamicsbased stability criteria for constitutive equations of isotropic hyperelastic solids, J. Mech. Phys. Solids, 2019, 124, 115–142, DOI: 10.1016/j.jmps.2018.09.038. Search in Google Scholar

Vaishnav R.N., Young J.T., Patel D.J., Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment, Circ. Res., 1973, 32, 577–583, DOI: 10.1161/01.RES.32.5.577. Search in Google Scholar

Yang C., Bach R.G., Zheng J., Naqa I.E., Woodard P.K., Teng Z., Billiar K., Tang D., In vivo IVUS-based 3-D fluid– structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis, IEEE T. Bio-Med. Eng., 2009, 56, 2420–2428, DOI: 10.1109/TBME.2009.2025658. Search in Google Scholar

Yeoh O.H., Some forms of the strain energy function for rubber, Rubber Chem. Technol., 1993, 66, 754–771. DOI: 10.5254/1.3538343. Search in Google Scholar