Accesso libero

A study on the physicochemical properties of surface modified Ti13Nb13Zr alloy for skeletal implants

, , ,  e   
01 apr 2022
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Basiaga M., Staszuk M., Walke W., Tański T., Kajzer W., Potentiostatic, potentiodynamic and impedance study of TiO2 layers deposited of 316 LVM steel used for coronary stents, Arch. Metall. Mater., 2016, 61, 821–824, https://doi.org/10.1515/amm-2016-0138 Search in Google Scholar

Basiaga M., Walke W., Staszuk M., Kajzer W., Kajzer A., Nowinska K., Influence of ALD process parameters on the physical and chemical properties of the surface of vascular stents, Arch. Civ. Mech., 2017, 17, 1, 32–42. Search in Google Scholar

Będziński R., Filipiak J., Pezowicz C., Krzak J., Kowalski M., Influence of substrate roughness on TiO2 and SiO2 coating topography coated by functional sol-gel derived layers, Eng. Biomater., 2008, 11, 87–89. Search in Google Scholar

Bigi A., Fini M., Bracci B., Boanini E., Torricelli P., Giavaresi G. et al., The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model, Biomaterials, 2008, 29, 1730–1736, https://doi.org/10.1016/j.biomaterials.2007.12.011 Search in Google Scholar

Czyzewska-Dors E., Dors A., Pomorska-Mol M., Właściwości biofilmu bakteryjnego warunkujące oporność na antybiotyki oraz metody jego zwalczania, Życie Weterynaryjne, 2018, 93, 765–771. Search in Google Scholar

Dommeti V.K., Pramanik S., Roy S., Effect of polyethylene glycol on surface coating of Ta2O5 onto titanium substrate in sol-gel technique, Acta Bioeng. Biomech., 2021, 23, 197–206, https://doi.org/10.37190/ABB-01757-2020-05 Search in Google Scholar

Gallo J., Holinka M., Moucha C.S., Antibacterial surface treatment for orthopaedic implants, Int. J. Mol. Sci., 2014, 15, 13849–13880, https://doi.org/10.3390/ijms150813849 Search in Google Scholar

Godlewski M., Guziewicz E., Łuka G., Krajewski T., Łukasiewicz M., Wachnicki Ł., ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide, Thin Solid Films, 2009, 518, 1145–1148, https://doi.org/10.1016/j.tsf.2009.04.066 Search in Google Scholar

Golvano I., Garcia I., Conde A., Tato W., Aginagalde A., Influence of fluoride content and pH on corrosion and tribocorrosion behaviour of Ti13Nb13Zr alloy in oral environment, J. Mech. Behav. Biomed. Mater., 2015, 49, 186–196, https://doi.org/10.1016/j.jmbbm.2015.05.008 Search in Google Scholar

Kong J.Z., Ren C., Tai G.A., Zhang X., Li A.D., Wu D. et al., Ultrathin ZnO coating for improved electrochemical performance of LiNi 0.5Co0.2Mn0.3O2 cathode material, J. Power Sources, 2014, 266, 433–439, https://doi.org/10.1016/j.jpowsour.2014.05.027. Search in Google Scholar

Kurpanik R., Rogowska P., Sarraj S., Walke W., Wpływ przygotowania powierzchni oraz parametrów procesu utleniania anodowego na zwilżalność i odporność korozyjną tytanu cpTi Grade 2, Aktual. Probl. Biomech., 2019, 18, 5–12. Search in Google Scholar

Marciniak J., Biomateriały, Wydawnictwo, 2013, https://doi.org/10.1017/CBO9781107415324.004 Search in Google Scholar

Martin P.M., Handbook of Deposition Technologies for Films and Coatings, Third Edition: Science, Applications and Technology, Peter M.M., 2010. Search in Google Scholar

Mróz W., Budner B., Burdyńska S., Czwartos J., Prokopiuk A., Major Ł., Osadzanie warstw węglowych metodami plazmowymi, na poliuretanie „ChronoFlex AR/LT” planowanym do zastosowania w programie „Polskie Sztuczne Serce”, 2012. Search in Google Scholar

Orzechowska A., Szymańska R., Nanotechnologia w zastosowaniach biologicznych – wprowadzenie, Wszechświat, 2016, 117, 60–69. Search in Google Scholar

Pasich E., Walczewska M., Pasich A., Marcinkiewicz J., Mechanism and risk factors of oral biofilm formation, Postępy Hig. Med. Dosw., 2013, 67, 736–741, https://doi.org/10.5604/17322693.1061393 Search in Google Scholar

Patel S., Butt A., Tao Q., Royhman D., Sukotjo C., Takoudis C.G., Novel functionalization of Ti-V alloy and Ti-II using atomic layer deposition for improved surface wettability, Colloids Surfaces B Biointerfaces, 2014, 115, 280–285, https://doi.org/10.1016/j.colsurfb.2013.11.038 Search in Google Scholar

Pokrowiecki R., Szaraniec B., Chłopek J., Zaleska M., Recent trends in surface modification of the titanium biomaterials used for endoosseus dental implants, Eng. Biomater., 2014, 17, 2–10. Search in Google Scholar

Pokrowiecki R., Tyski S., Zaleska M., Problematyka zakażeń okołowszczepowych, Postępy Mikrobiol., 2014, 53, 123–134. Search in Google Scholar

Qiu Z.Y., Chen C., Wang X.M., Lee I.S., Advances in the surface modification techniques of bone-related implants for last 10 years, Regen. Biomater., 2014, 1, 67–79. Search in Google Scholar

Schroedera G., Nanotechnologia, kosmetyki, chemia supramolekularna, Cursiva, 2010. Search in Google Scholar

Surowska B., Bieniaś J., A comprative analysis of surface modification influence on selected properties of titanum and titanium alloy, Eng. Biomater. Biomater., 2010, 1, 72–76. Search in Google Scholar

Szewczenko J., Jaglarz J., Basiaga M., Kurzyk J., Skoczek E., Paszenda Z., Topography and thickness of passive layers on anodically oxidized Ti6Al4V alloys, Rev. Electr., 2012, 88, 12B, 228–231. Search in Google Scholar

Szewczenko J., Kajzer W., Kajzer A., Basiaga M., Kaczmarek M., Antonowicz M., Biodegradable polymer coatings on Ti6Al7Nb alloy, Acta Bioeng. Biomech., 2020, 21, 83–92, https://doi.org/10.37190/abb-01461-2019-01 Search in Google Scholar

Szlauer W., Obłąk E., Paluch E., Baldy-Chudzik K., Biofilm and methods of its eradication, Postępy Hig. Med. Dosw., 2019, 73, 397–413, https://doi.org/10.5604/01.3001.0013.1605. Search in Google Scholar

Tsai M.T., Chang Y.Y., Huang H.L., Hsu J.T., Chen Y.C., Wu A.Y.J., Characterization and antibacterial performance of bioactive Ti-Zn-O coatings deposited on titanium implants, Thin Solid Films, 2013, 528, 143–150, https://doi.org/10.1016/j.tsf.2012.05.093 Search in Google Scholar

Vladkova T.G., Staneva A.D., Gospodinova D.N., Surface engineered biomaterials and ureteral stents inhibiting biofilm formation and encrustation, Surf. Coatings Technol., 2020, 404, https://doi.org/10.1016/j.surfcoat.2020.126424 Search in Google Scholar

Wachnicki Ł., Strukturalna, optyczna i elektryczna charakteryzacja warstw monokrystalicznych oraz nanostruktur tlenku cynku otrzymywanych metodą osadzania warstw atomowych, Polish Academy of Sciences, 2014. Search in Google Scholar

Wiatrak B., Karuga-Kuźniewska E., Staszuk A., Gabryś J., Tadeusiewicz R., Vascular System Infections: Characteristics, Risk Factors, Prevention Methods and Economic Impact, Polim. Med., 2016, 46, 59–69, https://doi.org/10.17219/pim/64696 Search in Google Scholar

Xiang Y., Li J., Liu X., Cui Z., Yang X., Yeung K.W.K., Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility, Mater. Sci. Eng. C., 2017, 79, 629–637, https://doi.org/10.1016/j.msec.2017.05.115 Search in Google Scholar

Yang B., Applications of Titania Atomic Layer Deposition in the Biomedical Field and Recent Updates, Am. J. Biomed. Sci. Res., 2020, 8, 465–468, https://doi.org/10.34297/ajbsr.2020.08.001321 Search in Google Scholar

Yang Q., Yuan W., Liu X., Zheng Y., Cui Z., Yang X., Atomic layer deposited ZrO2 nanofilm on Mg-Sr alloy for enhanced corrosion resistance and biocompatibility, Acta Biomater., 2017, 58, 515–526, https://doi.org/10.1016/j.actbio.2017.06.015 Search in Google Scholar

Zdunek B., Pietraszek A., Biomedyczny przegląd naukowy, Tom. 2. Wydawnictwo Naukowe TYGIEL, sp. z o.o., 2016. Search in Google Scholar

Zhu S., Liu J., Sun J., Growth of ultrathin SnO2 on carbon nanotubes by atomic layer deposition and their application in lithium ion battery anodes, Appl. Surf. Sci., 2019, 484, 600–609. https://doi.org/10.1016/j.apsusc.2019.04.163 Search in Google Scholar