Accesso libero

The influence of facet joint orientation in the lumbar spine segment on the intervertebral disc bulge

 e   
10 mar 2021
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Adams M.A., McNally D.S., Dolan P., Stress distributions inside intervertebral discs. The effects of age and degeneration, J. Bone Joint Surg. Br., 1996, 76 (6), 965–972, DOI: 10.1302/0301-620x78b6.1287. Search in Google Scholar

Berry J.L., Moran J.M., Berg W.S., Steffee A.D., A morphometric study of human lumbar and selected thoracic vertebrae, Spine (Phila, Pa 1976), 1987, 12 (4), 362–367, DOI: 10.1097/00007632-198705000-00010. Search in Google Scholar

Denozière G., Ku D.N., Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc, J. Biomech., 2006, 39 (4), 766–775, DOI: 10.1016/j.jbiomech.2004.07.039. Search in Google Scholar

Do D.H., Taghavi C.E., Fong W., Kong M.H., Morishita Y., Wang J.C., The relationship between degree of facet tropism and amount of dynamic disc bulge in lumbar spine of patients symptomatic for low back pain, Eur. Spine J., 2011, 20, 71–78, DOI: 10.1007/s00586-010-1558-8. Search in Google Scholar

Farfan H.F., Sullivan J.D., The relation of facet orientation to intervertebral disc failure, Can. J. Surg., 1967, 10 (2), 179–185. Search in Google Scholar

Heuer F., Schmidt H., Wilke H.J., The relation between intervertebral disc bulging and annular fiber associated strains for simple and complex loading, J. Biomech., 2008, 41 (5), 1086–1094, DOI: 10.1016/j.jbiomech.2007.11.019. Search in Google Scholar

Kalichman L., Suri P., Guermazi A., Li L., Hunter D.J., Facet orientation and tropism, associations with facet joint osteoarthritis and degenerative spondylolisthesis, Spine, 2009, 34 (16), E579, DOI: 10.1097/BRS.0b013e3181aa2acb. Search in Google Scholar

Karacan I., Aydin T., Sahin Z., Cidem M., Koyuncu H., Aktas I., Uludag M., Facet angles in lumbar disc herniation, their relation to anthropometric features, Spine, 2004, 29 (10), 1132–1136, DOI: 10.1097/00007632-200405150-00016. Search in Google Scholar

Kim H.J., Tak Kang K., Chang B.S., Lee CH.K., Kim J.W. et al., Biomechanical analysis of fusion segment rigidity upon stress at both the fusion and adjacent segments – a comparison between unilateral and bilateral pedicle screw fixation, Yonsei Med. J., 2014, 55, 1386–1394, DOI: 10.3349/ymj.2014.55.5.1386. Search in Google Scholar

Kong M.H., He W., Tsai Y.D., Chen N.F., Keorochana G., Do D.H. et al., Relationship of facet tropism with degeneration and stability of functional spinal unit, Yonsei Med. J., 2009, 5, 624–629, DOI: 10.3349/ymj.2009.50.5.624. Search in Google Scholar

Li Q.Y., Kim H.J., Son J., Kang K.T., Chang B.S., Lee C.K., Yeom J.S., Biomechanical analysis of lumbar decompression surgery in relation to degenerative changes in the lumbar spine – validated finite element analysis, Comput. Biol. Med., 2017, 89, 512–519, DOI: 10.1016/j.compbiomed.2017.09.003. Search in Google Scholar

Liu X., Huang Z., Zhou R., Zhu Q., Ji W., Long Y., Wang J., The Effects of Orientation of Lumbar Facet Joints on the Facet Joint Contact Forces. An In Vitro Biomechanical Study, Spine, 2018, 43 (4), E216–E220, DOI: 10.1097/BRS.0000000000002290. Search in Google Scholar

López E., Elena I., Herrera A., Mateo J., Lobo-Escolar A. et al., Probability of osteoporotic vertebral fractures assessment based on DXA measurements and finite element simulation, Adv. Biosci. Biotechnol., 2014, 5, 527–545, DOI: 10.4236/abb.2014.56063. Search in Google Scholar

Lotz J.C., Fields A.J., Liebenberg E.C., The role of the vertebral endplate in low back pain, Global Spine J., 2013, 3 (3), 153–164, DOI: 10.1055/s-0033-1347298. Search in Google Scholar

Masharawi Y., Rothschild B., Dar G., Peleg S., Robinson D., Been E., Hershkovitz I., Facet orientation in the thoracolumbar spine, three-dimensional anatomic and biomechanical analysis, Spine, 2004, 29 (16), 1755–1763, DOI: 10.1097/01.BRS.0000134575.04084.EF. Search in Google Scholar

Michnik R., Zadoń H. et al., The effect of the pelvis position in the sagittal plane on loads in the human musculoskeletal system, Acta Bioeng. Biomech., 2020, 22 (3), 33–42, DOI: 10.37190/ABB-01606-2020-02. Search in Google Scholar

Panjabi M.M., Brand R.A., White A.A., Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves, J. Bone Joint Surg. Am., 1976, 58 (5), 642–652, DOI: 10.2106/00004623-197658050-00011. Search in Google Scholar

Panjabi M.M., Oxland T., Takata K., Goel V., Duranceau J., Krag M., Articular facets of the human spine. Quantitative threedimensional anatomy, Spine (Phila, Pa 1976), 1993, 18 (10), 1298–1310, DOI: 10.1097/00007632-199308000-00009. Search in Google Scholar

Pichaisak W., Chotiyarnwong C., Chotiyarnwong P., Facet joint orientation and tropism in lumbar degenerative disc disease and spondylolisthesis, J. Med. Assoc. Thai., 2015, 98 (4), 373–379, DOI: 10.1055/s-0034-1376586. Search in Google Scholar

Rohlmann A., Zander T., Schmidt H., Wilke H.J., Bergmann G., Analysis of the influence of disc degeneration on the mechanical behavior of a lumbar motion segment using the finite element method, J. Biomech., 2006, 39 (13), 2484–2490, DOI: 10.1016/j.jbiomech.2005.07.026. Search in Google Scholar

Rong X., Liu Z., Wang B., Pan X., Liu H., Relationship between facet tropism and facet joint degeneration in the sub-axial cervical spine, BMC Musculoskeletal Disorders, 2017, 18 (1), 86, DOI: 10.1186/s12891-017-1448-x. Search in Google Scholar

Samartzis D., Cheung J.P., Rajasekaran S., Kawaguchi Y., Acharya S., Kawakami M. et al., Critical values of facet joint angulation and tropism in the development of lumbar degenerative spondylolisthesis: an international, large-scale multicenter study by the AO Spine Asia Pacific Research Collaboration Consortium, Global Spine J., 2016, 6, 414–421, DOI: 10.1055/s-0035-1564417. Search in Google Scholar

Shirazi-Adl A., Drouin G., Load-bearing role of facets in a lumbar segment under sagittal plane loadings, J. Biomech., 1987, 20 (6), 601–613, DOI: 10.1016/0021-9290(87)90281-8. Search in Google Scholar

Szkoda K., Pezowicz C.A., Finite element analysis of fixation system influence on the thoracolumbar spine stability, Appl. Mech. Mater., 2016, 821, 685–692, DOI: 10.4028/www.scientific.net/AMM.821.685. Search in Google Scholar

Szkoda-Poliszuk K., Żak M., Pezowicz C., Finite element analysis of the influence of three-joint spinal complex on the change of the intervertebral disc bulge and height, Int. J. Numer. Meth. Biomed. Engng., 2018, 34 (9), e3107, DOI: 10.1002/cnm.3107. Search in Google Scholar

Weishaupt D., Zanetti M., Boos N. et al., MR imaging and CT in osteoarthritis of the lumbar facet joints, Skeletal Radiol., 1999, 28, 215–219, DOI: 10.1007/s002560050503. Search in Google Scholar

Xu M., Yang J., Lieberman I.H., Haddas R., Lumbar spine finite element model for healthy subjects: development and validation, Comput. Methods Biomech. Biomed. Eng., 2017, 20 (1), 1–15, DOI: 10.1080/10255842.2016.1193596. Search in Google Scholar

Zahaf S., Habib H., Mansouri B., Belarbi A., Azari Z., The effect of the eccentric loading on the components of the spine, GJRE, 2016, 4 (1), 6–22, DOI: 10.15761/HMO.1000110. Search in Google Scholar

Zahari S.N., Latif M.J.A., Rahim N.R.A., Kadir M.R.A., Kamarul T., The effects of physiological biomechanical loading on intradiscal pressure and annulus stress in lumbar spine: a finite element analysis, J. Healthc. Eng., 2017, 9618940, DOI: 10.1155/2017/9618940. Search in Google Scholar

Żak M., Effect of support on mechanical properties of the intervertebral disc in long-term compression testing, J. Theor. Appl. Mech., 2014, 52 (3), 677–686. Search in Google Scholar

Zander T., Rohlmann A., Bergmann G., Influence of different artificial disc kinematics on spine biomechanics, Clin. Biomech., 2009, 24 (2), 135–142, DOI: 10.1016/j.clinbiomech.2008.11.008. Search in Google Scholar