[
Adj, G., Canales-Martínez, I., Cruz-Cortés, N., Menezes, A., Oliveira, T., Rivera-Zamarripa, L. and Rodríguez-Henríquez, F. (2018). Computing discrete logarithms in cryptographically-interesting characteristic-three finite fields, Advances in Mathematics of Communications 12(4): 741–759.
]Search in Google Scholar
[
Ahlswede, R. (2016). Elliptic curve cryptosystems, in A. Ahlswede et al. (Eds), Hiding Data Selected Topics: Foundations in Signal Processing, Communications and Networking, Vol. 12, Cham, pp. 225–336, DOI: 10.1007/978-3-319-31515-7_4.
]Apri DOISearch in Google Scholar
[
Alwen, J., Dodis, Y. and Wichs, D. (2009). Leakage-resilient public-key cryptography in the bounded-retrieval model, in S. Halevi (Ed.), Advances in Cryptology, CRYPTO 2009, Springer, Berlin, pp. 36–54.
]Search in Google Scholar
[
Anderson, R.J. (1993). Practical RSA trapdoor, Electronics Letters 29(11): 995.
]Search in Google Scholar
[
Bressoud, D.M. and Wagon, S. (2000). Course in Computational Number Theory, Key College Publishing, Emeryville.
]Search in Google Scholar
[
Devidas, S., Rao Y.V., S. and Rekha, N.R. (2021). A decentralized group signature scheme for privacy protection in a blockchain, International Journal of Applied Mathematics and Computer Science 31(2): 353–364, DOI: 10.34768/amcs-2021-0024.
]Apri DOISearch in Google Scholar
[
Diffie, W. and Hellman, M. (1976). New directions in cryptography, IEEE Transactions on Information Theory 22(6): 644–654, DOI: 10.1109/TIT.1976.1055638.
]Apri DOISearch in Google Scholar
[
Dodis, Y., Franklin, M., Katz, J., Miyaji, A. and Yung, M. (2004). A generic construction for intrusion-resilient public-key encryption, in T. Okamoto (Ed.), Topics in Cryptology, CT-RSA 2004, Springer, Berlin/Heidelberg, pp. 81–98.
]Search in Google Scholar
[
Elgamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Transactions on Information Theory 31(4): 469–472, DOI: 10.1109/TIT.1985.10570748.
]Apri DOISearch in Google Scholar
[
Erra, R. and Grenier, C. (2009). The Fermat factorization method revisited, Cryptology ePrint Archive, Report 2009/318, https://eprint.iacr.org/2009/318.pdf.
]Search in Google Scholar
[
ETSI (2007). Electronic signatures and infrastructures (ESI): Algorithms and parameters for secure electronic signatures. Part 1: Hash functions and asymmetric algorithms, TS 102 176-1—V2.1.1, European Telecommunications Standards Institute, Valbonne, https://www.etsi.org/deliver/etsi_ts/102100_102199/10217601/02.01.01_60/ts_10217601v020101p.pdf.
]Search in Google Scholar
[
Gordon, D. (2011). Discrete logarithm problem, in H.C.A. van Tilborg and S. Jajodia (Eds), Encyclopedia of Cryptography and Security, Springer, Boston, pp. 352–353, DOI: 10.1007/978-1-4419-5906-5_445.
]Apri DOISearch in Google Scholar
[
Kaliski, B. (2011). Euler’s totient function, in H.C.A. van Tilborg and S. Jajodia (Eds), Encyclopedia of Cryptography and Security, Springer, Boston, pp. 430–430.
]Search in Google Scholar
[
Kaliski, B.S.J. (1993). Anderson’s RSA trapdoor can be broken, Electronics Letters 29(15): 1387–1388.
]Search in Google Scholar
[
Markelova, A.V. (2021). Embedding asymmetric backdoors into the RSA key generator, Journal of Computer Virology and Hacking Techniques 17(1): 37–46, DOI: 10.1007/s11416-020-00363-x.
]Apri DOISearch in Google Scholar
[
Menezes, A.J., Van Oorschot, P.C. and Vanstone, S.A. (1996). Handbook of Applied Cryptography, CRC Press, Boca Raton.
]Search in Google Scholar
[
NIST (2019). Recommendation for pair-wise key establishment using integer factorization cryptography, NIST SP 800-56Br2, National Institute of Standards and Technology, Gaithersburg, DOI: 10.6028/NIST.SP.800-56Br2.
]Apri DOISearch in Google Scholar
[
Pomerance, C. (1982). Analysis and comparison of some integer factoring algorithms, in H.W. Lenstra and R. Tijdeman (Eds), Computational Methods in Number Theory, Math Centrum, Amsterdam, pp. 89–139.
]Search in Google Scholar
[
Rivest, R. L., Shamir, A. and Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM 21(2): 120–126, DOI: 10.1145/359340.359342.
]Apri DOISearch in Google Scholar
[
Sako, K. (2011). Digital signature schemes, in H.C.A. van Tilborg and S. Jajodia (Eds), Encyclopedia of Cryptography and Security, Springer, Boston, pp. 343–344.
]Search in Google Scholar
[
Smart, N., Rijmen, V., Gierlichs, B., Paterson, K., Stam, M., Warinschi, B. and Watson, G. (2014). Algorithms, key size and parameters report 2014, European Union Agency for Network and Information Security (ENISA), Brussels, https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014.
]Search in Google Scholar
[
Svenda, P., Nemec, M., Sekan, P., Kvasnovsky, R., Formanek, D., Komarek, D. and Matyas, V. (2016). The million-key question—Investigating the origins of RSA public keys, 25th USENIX Security Symposium (USENIX Security 16), Austin, USA, pp. 893–910.
]Search in Google Scholar
[
Yan, S.Y. (2019). Cybercryptography: Applicable Cryptography for Cyberspace Security, Springer, Cham, chapter “Elliptic curve cryptography”, pp. 343–398.
]Search in Google Scholar
[
Yasuda, M., Shimoyama, T., Kogure, J. and Izu, T. (2012). On the strength comparison of the ECDLP and the IFP, in I. Visconti and R. De Prisco (Eds), Security and Cryptography for Networks, Springer, Berlin, pp. 302–325.
]Search in Google Scholar
[
Young, A. and Yung, M. (1996). The dark side of “black-box” cryptography or: Should we trust capstone?, in N. Koblitz (Ed.), Advances in Cryptology, CRYPTO’96, Springer, Berlin/Heidelberg, pp. 89–103.
]Search in Google Scholar
[
Young, A. and Yung, M. (1997). Kleptography: Using cryptography against cryptography, in W. Fumy (Ed.), Advances in Cryptology, EUROCRYPT’97, Springer, Berlin/Heidelberg, pp. 62–74.
]Search in Google Scholar