Accesso libero

A fault detection method based on stacking the SAE-SRBM for nonstationary and stationary hybrid processes

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Adil, M., Abid, M., Khan, A.Q., Mustafa, G. and Ahmed, N. (2016). Exponential discriminant analysis for fault diagnosis, Neurocomputing 171: 1344–1353, DOI: 10.1016/j.neucom.2015.07.099.10.1016/j.neucom.2015.07.099 Search in Google Scholar

Byrski, W., Drapała, M. and Byrski, J. (2019). An adaptive identification method based on the modulating functions technique and exact state observers for modeling and simulation of a nonlinear MISO glass melting process, International Journal of Applied Mathematics and Computer Science 29(4): 739–757, DOI: 10.2478/amcs-2019-0055.10.2478/amcs-2019-0055 Search in Google Scholar

Chen, Q., Kruger, U. and Leung, A.Y.T. (2009). Cointegration testing method for monitoring nonstationary processes, Industrial and Engineering Chemistry Research 48(7): 3533–3543, DOI: 10.1021/ie801611s.10.1021/ie801611s Search in Google Scholar

Chen, Z.W., Liu, C., Ding, S., Peng, T., Yang, C.H., Gui, W.H. and Shardt, Y. (2020a). A just-in-time-learning aided canonical correlation analysis method for multimode process monitoring and fault detection, IEEE Transactions on Industrial Electronics 68(6): 5259–5270, DOI: 10.1109/TIE.2020.2989708.10.1109/TIE.2020.2989708 Search in Google Scholar

Chen, Z.W., Yang, C.H., Peng, T., Dan, H., Li, C. and Gui, W.H. (2020b). A cumulative canonical correlation analysis-based sensor precision degradation detection method, IEEE Transactions on Industrial Electronics 66(8): 6321–6330, DOI: 10.1109/TIE.2018.2873100.10.1109/TIE.2018.2873100 Search in Google Scholar

Dickey, D.P. (1981). Likelihood ratio statistics for autoregressive time serries with a unit root, Econometrica 49(4): 1057–1072, DOI: 10.2307/1912517.10.2307/1912517 Search in Google Scholar

Dong, J., Zhang, K., Huang, Y., Li, G. and Peng, K.X. (2015). Adaptive total PLS based quality-relevant process monitoring with application to the Tennessee Eastman process, Neurocomputing 154: 77–85, DOI: 10.1016/j.neucom.2014.12.017.10.1016/j.neucom.2014.12.017 Search in Google Scholar

Engle, R.F. and Granger, C.W.J. (1987). Co-integration and error correction: Representation, estimation, and testing, Econometrica 55(2): 251–276, DOI: 10.2307/1913236.10.2307/1913236 Search in Google Scholar

Firouzi, A., Yang, W. and Li, C.Q. (2018). Efficient solution for calculation of upcrossing rate of nonstationary Gaussian process, Journal of Engineering Mechanics 144(4): 04018015, DOI: 10.1061/(ASCE)EM.1943-7889.0001420.10.1061/(ASCE)EM.1943-7889.0001420 Search in Google Scholar

Geng, Z.Q., Wang, Z., Hu, H.X., Han, Y.M., Lin, X.Y. and Zhong, Y.H. (2018). A fault detection method based on horizontal visibility graph-integrated complex networks: application to complex chemical processes, The Canadian Journal of Chemical Engineering 97(5): 1129–1138, DOI: 10.1002/cjce.23319.10.1002/cjce.23319 Search in Google Scholar

He, Z.M., Zhou, H.Y., Wang, J.Q., Chen, Z.W., Wang, D.Y. and Yan, X. (2015). An improved detection statistic for monitoring the nonstationary and nonlinear processes, Chemometrics and Intelligent Laboratory Systems 145: 114–124, DOI: 10.1016/j.chemolab.2015.04.016.10.1016/j.chemolab.2015.04.016 Search in Google Scholar

Jiang, P., Hu, Z.X., Liu, J., Yu, S.N. and Wu, F. (2016). Fault diagnosis based on chemical sensor data with an active deep neural network, Sensors 16(10): 01695, DOI: 10.3390/s16101695.10.3390/s16101695508748327754386 Search in Google Scholar

Lee, H., Ekanadham, C. and Ng, A.Y. (2008). Sparse deep belief net model for visual area v2, Proceedings of the 21st International Conference on Neural Networks, NIPS’07, Vancouver, Canada, pp. 873–880. Search in Google Scholar

Leng, J.W. and Jiang, P.Y. (2016). A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm, Knowledge Based Systems 100: 188–199, DOI: 10.1016/j.knosys.2016.03.008.10.1016/j.knosys.2016.03.008 Search in Google Scholar

Li, G., Qin, S.J. and Yuan, T. (2014). Nonstationarity and cointegration tests for fault detection of dynamic processes, IFAC Proceedings Volumes 47(3): 10616–10621, DOI: 10.3182/20140824-6-ZA-1003.00754.10.3182/20140824-6-ZA-1003.00754 Search in Google Scholar

Lin, Y.L., Kruger, U. and Chen, Q. (2017). Monitoring nonstationary dynamic systems using cointegration and common-trends analysis, Industrial and Engineering Chemistry Research 56(31): 8895–8905, DOI: 10.1021/acs.iecr.7b00011.10.1021/acs.iecr.7b00011 Search in Google Scholar

Lin, Y.L., Kruger, U., Gu, F.S., Ball, A. and Chen, Q. (2019a). Monitoring nonstationary and dynamic trends for practical process fault diagnosis, Control Engineering Practice 84: 139–158, DOI: 10.1016/j.conengprac.2018.11.020.10.1016/j.conengprac.2018.11.020 Search in Google Scholar

Lin, Y.L., Kruger, U., Gu, F.S., Balland, A. and Chen, Q. (2019b). Monitoring nonstationary processes using stationary subspace analysis and fractional integration order estimation, Industrial and Engineering Chemistry Research 58(16): 6486–6504, DOI: 10.1021/acs.iecr.8b05099.10.1021/acs.iecr.8b05099 Search in Google Scholar

Liu, Q. and Qin, S.J. (2016). Perspectives on big data modeling of process industries, Acta Automatica Sinica 42(2): 161–171. Search in Google Scholar

Lu, W., Liang, B., Cheng, Y., Meng, D. and Zhang, T. (2017). Deep model based domain adaptation for fault diagnosis, IEEE Transactions on Industrial Electronics 64(99): 2296–2305, DOI: 10.1109/TIE.2016.2627020.10.1109/TIE.2016.2627020 Search in Google Scholar

Ma, J., Li, G. and Zhou, D. (2018). Fault prognosis technology for non-Gaussian and nonlinear processes based on KICA reconstruction, Canadian Journal of Chemical Engineering 96(2): 515–520, DOI: 10.1002/cjce.23051.10.1002/cjce.23051 Search in Google Scholar

Montmain, J., Labreuche, C., Imoussaten, A. and Trousset, F. (2015). Multi-criteria improvement of complex systems, Information Sciences 291: 61–84, DOI: 10.1016/j.ins.2014.08.027.10.1016/j.ins.2014.08.027 Search in Google Scholar

Orlov, A.A., Ushakov, A.A., Sovach, V.P. and Mymrina, D.F. (2017). Modeling of nonstationary processes during separation of multicomponent isotope mixtures, Separation Science and Technology 53(5): 796–806, DOI: 10.1080/01496395.2017.1399910.10.1080/01496395.2017.1399910 Search in Google Scholar

Pröll, S., Lunze, J. and Jarmolowitz, F. (2018). From structural analysis to observer-based residual generation for fault detection, International Journal of Applied Mathematics and Computer Science 28(2): 233–245, DOI: 10.2478/amcs-2018-0017.10.2478/amcs-2018-0017 Search in Google Scholar

Ren, H., Chai, Y., Qu, J.F., Ye, X. and Tang, Q. (2018). A novel adaptive fault detection methodology for complex system using deep belief networks and multiple models: A case study on cryogenic propellant loading system, Neurocomputing 275: 2111–2125, DOI: 10.1016/j.neucom.2017.10.063.10.1016/j.neucom.2017.10.063 Search in Google Scholar

Ren, H., Qu, J.F., Chai, Y., Tang, Q. and Ye, X. (2017). Deep learning for fault diagnosis: The state of the art and challenge, Control and Decision 32(8): 1343–1358, DOI: 10.13195/j.kzyjc.2016.1625. Search in Google Scholar

Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986). Learning representations by back-propagating errors, Nature 323(9): 533–536.10.1038/323533a0 Search in Google Scholar

Sadough Vanini, Z.N., Khorasani, K. and Meskin, N. (2014). Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach, Information Sciences 259(3): 234–251, DOI: 10.1016/j.ins.2013.05.032.10.1016/j.ins.2013.05.032 Search in Google Scholar

Severson, K., Chaiwatanodom, P. and Braatz, R.D. (2016). Perspectives on process monitoring of industrial systems, Annual Reviews in Control 42: 190–200, DOI: 10.1016/j.ifacol.2015.09.646.10.1016/j.ifacol.2015.09.646 Search in Google Scholar

Shang, J., Chen, M., Ji, H., Zhou, D., Zhang, H. and Li, M. (2017). Dominant trend based logistic regression for fault diagnosis in nonstationary processes, Control Engineering Practice 66: 156–168, DOI: 10.1016/j.conengprac.2017.06.011.10.1016/j.conengprac.2017.06.011 Search in Google Scholar

Souza, B.D., Kuhn, E.V. and Seara, R. (2019). A time-varying autoregressive model for characterizing nonstationary processes, IEEE Signal Processing Letters 26(1): 134–138, DOI: 10.1109/LSP.2018.2880086.10.1109/LSP.2018.2880086 Search in Google Scholar

Sun, H., Zhang, S.M., Zhao, C.H. and Gao, F.R. (2017). A sparse reconstruction strategy for online fault diagnosis in nonstationary processes with no a priori fault information, Industrial and Engineering Chemistry Research 56(24): 6993–7008, DOI: 10.1021/acs.iecr.7b00156.10.1021/acs.iecr.7b00156 Search in Google Scholar

Sun, W.J., Shao, S.Y., Zhao, R., Yan, R.Q., Zhang, X.W. and Chen, X.F. (2016). A sparse auto-encoder-based deep neural network approach for induction motor faults classification, Measurement 89: 171–178, DOI: 10.1016/j.measurement.2016.04.007.10.1016/j.measurement.2016.04.007 Search in Google Scholar

Utkin, L.V., Zaborovskii, V.S. and Popov, S.G. (2016). Detection of anomalous behavior in a robot system based on deep learning elements, Automatic Control and Computer Sciences 50(8): 726–733, DOI: 10.3103/S0146411616080319.10.3103/S0146411616080319 Search in Google Scholar

Wang, L.K., Zhao, X.Y., Pei, J.N. and Tang, G.Y. (2016). Transformer fault diagnosis using continuous sparse autoencoder, SpringerPlus 5, Article no.: 448, DOI: 10.1186/s40064-016-2107-7.10.1186/s40064-016-2107-7483078327119052 Search in Google Scholar

Worden, K., Baldacchino, T., Rowson, J. and Cross, E.J. (2016). Some recent developments in SHM based on nonstationary time series analysis, Proceedings of the IEEE 104(8): 1589–1603, DOI: 10.1109/JPROC.2016.2573596.10.1109/JPROC.2016.2573596 Search in Google Scholar

Xi, X.P., Chen, M.Y., Zhang, H.W. and Zhou, D.H. (2018). An improved non-Markovian degradation model with long-term dependency and item-to-item uncertainty, Mechanical Systems and Signal Processing 105: 467–480, DOI: 10.1016/j.ymssp.2017.12.017.10.1016/j.ymssp.2017.12.017 Search in Google Scholar

Xiong, Y. and Zuo, R. (2016). Recognition of geochemical anomalies using a deep autoencoder network, Computers and Geosciences 86: 75–82, DOI: 10.1016/j.cageo.2015.10.006.10.1016/j.cageo.2015.10.006 Search in Google Scholar

Yan, W.W., Guo, P.J., Gong, L.A. and Li, Z.K. (2016). Nonlinear and robust statistical process monitoring based on variant autoencoders, Chemometrics and Intelligent Laboratory Systems 158: 31–40, DOI: 10.1016/j.chemolab.2016.08.007.10.1016/j.chemolab.2016.08.007 Search in Google Scholar

Yin, S., Ding, S.X., Haghani, A., Hao, H. and Zhang, P. (2012). A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process, Journal of Process Control 22(9): 1567–1581, DOI: 10.1016/j.jprocont.2012.06.009.10.1016/j.jprocont.2012.06.009 Search in Google Scholar

Zhang, Q., Yang, L.T. and Chen, Z.W. (2016). Deep computation model for unsupervised feature learning on big data, IEEE Transactions on Services Computing 9(1): 161–171, DOI: 10.1109/TSC.2015.2497705.10.1109/TSC.2015.2497705 Search in Google Scholar

Zhang, Z.H., Jiang, T., Zhan, C.J. and Yang, Y.P. (2019). Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring, Journal of Process Control 75: 136–155, DOI: 10.1016/j.jprocont.2019.01.008.10.1016/j.jprocont.2019.01.008 Search in Google Scholar

Zhang, Z., Jiang, T., Li, S. and Yang, Y. (2018). Automated feature learning for nonlinear process monitoring—An approach using stacked denoising autoencoder and k-nearest neighbor rule, Journal of Process Control 64: 49–61, DOI: 10.1016/j.jprocont.2018.02.004.10.1016/j.jprocont.2018.02.004 Search in Google Scholar

Zhang, Z. and Zhao, J. (2017). A deep belief network based fault diagnosis model for complex chemical processes, Computers and Chemical Engineering 107: 395–407, DOI: 10.1016/j.compchemeng.2017.02.041.10.1016/j.compchemeng.2017.02.041 Search in Google Scholar

Zhao, C.H. and Huang, B. (2018a). A full-condition monitoring method for nonstationary dynamic chemical processes with cointegration and slow feature analysis, American Institute of Chemical Engineers 64(5): 1662–1681, DOI: 10.1002/aic.16048.10.1002/aic.16048 Search in Google Scholar

Zhao, C.H. and Huang, B. (2018b). Incipient fault detection for complex industrial processes with stationary and nonstationary hybrid characteristics, Industrial and Engineering Chemistry Research 57: 5045–5057, DOI: 10.1021/acs.iecr.8b00233.10.1021/acs.iecr.8b00233 Search in Google Scholar

Zhao, C.H. and Sun, H. (2019). Dynamic distributed monitoring strategy for large-scale nonstationary processes subject to frequently varying conditions under closed-loop control, IEEE Transactions on Industrial Electronics 66(6): 4749–4758, DOI: 10.1109/TIE.2018.2864703.10.1109/TIE.2018.2864703 Search in Google Scholar

Zhirabok, A. and Shumsky, A. (2018). Fault diagnosis in nonlinear hybrid systems, International Journal of Applied Mathematics and Computer Science 28(4): 635–648, DOI: 10.2478/amcs-2018-0049.10.2478/amcs-2018-0049 Search in Google Scholar

Zou, X.Y. and Zhao, C.H. (2019). Meticulous assessment of operating performance for processes with a hybrid of stationary and nonstationary variables, Industrial and Engineering Chemistry Research 58: 1341–1351, DOI: 10.1021/acs.iecr.8b05005.10.1021/acs.iecr.8b05005 Search in Google Scholar

eISSN:
2083-8492
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Mathematics, Applied Mathematics