This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Castells M, Caffarena RD, Casaux ML, Schild C, Miño S, Castells F, Castells D, Victoria M, Riet-Correa F, Giannitti F, et al. Phylogenetic analyses of rotavirus A from cattle in Uruguay reveal the circulation of common and uncommon genotypes and suggest interspecies transmission. Pathogens. 2020;9(7):570. https://doi. org/10.3390/pathogens9070570CastellsMCaffarenaRDCasauxMLSchildCMiñoSCastellsFCastellsDVictoriaMRiet-CorreaFGiannittiFPhylogenetic analyses of rotavirus A from cattle in Uruguay reveal the circulation of common and uncommon genotypes and suggest interspecies transmission. Pathogens. 2020;9(7):570. https://doi.org/10.3390/pathogens9070570Search in Google Scholar
Castells M, Schild C, Caffarena D, Bok M, Giannitti F, Armendano J, Riet-Correa F, Victoria M, Parreño V, Colina R. Prevalence and viability of group A rotavirus in dairy farm water sources. J Appl Microbiol. 2018 Mar;124(3):922–929. https://doi. org/10.1111/jam.13691CastellsMSchildCCaffarenaDBokMGiannittiFArmendanoJRiet-CorreaFVictoriaMParreñoVColinaR.Prevalence and viability of group A rotavirus in dairy farm water sources. J Appl Microbiol. 2018Mar;124(3):922–929. https://doi.org/10.1111/jam.13691Search in Google Scholar
Cheng X, Wu W, Teng F, Yan Y, Li G, Wang L, Wang X, Wang R, Zhou H, Jiang Y, et al. Isolation and characterization of bovine RVA from Northeast China, 2017–2020. Life. 2021;11(12):1389. https://doi.org/10.3390/life11121389ChengXWuWTengFYanYLiGWangLWangXWangRZhouHJiangYIsolation and characterization of bovine RVA from Northeast China, 2017–2020. Life. 2021;11(12):1389. https://doi.org/10.3390/life11121389Search in Google Scholar
Cho HC, Kim EM, Shin SU, Park J, Choi KS. Molecular surveillance of rotavirus A associated with diarrheic calves from the Republic of Korea and full genomic characterization of bovine-porcine reassortant G5P[7] strain. Infect Genet Evol. 2022;100:105266. https://doi.org/10.1016/j.meegid.2022.105266ChoHCKimEMShinSUParkJChoiKS.Molecular surveillance of rotavirus A associated with diarrheic calves from the Republic of Korea and full genomic characterization of bovine-porcine reassortant G5P[7] strain. Infect Genet Evol. 2022;100:105266. https://doi.org/10.1016/j.meegid.2022.105266Search in Google Scholar
Crawford SE, Mukherjee SK, Estes MK, Lawton JA, Shaw AL, Ramig RF, Prasad BV. Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol. 2001;75(13):6052–6061. https://doi.org/10.1128/jvi.75.13.6052-6061.2001CrawfordSEMukherjeeSKEstesMKLawtonJAShawALRamigRFPrasadBV.Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol. 2001;75(13):6052–6061. https://doi.org/10.1128/jvi.75.13.6052-6061.2001Search in Google Scholar
da Silva Medeiros TN, Lorenzetti E, Alfieri AF, Alfieri AA. Phylogenetic analysis of a G6P[5] bovine rotavirus strain isolated in a neonatal diarrhea outbreak in a beef cattle herd vaccinated with G6P[1] and G10P[11] genotypes. Arch Virol. 2015;160(2):447–451. https://doi.org/10.1007/s00705-014-2271-4da Silva MedeirosTNLorenzettiEAlfieriAFAlfieriAA.Phylogenetic analysis of a G6P[5] bovine rotavirus strain isolated in a neonatal diarrhea outbreak in a beef cattle herd vaccinated with G6P[1] and G10P[11] genotypes. Arch Virol. 2015;160(2):447–451. https://doi.org/10.1007/s00705-014-2271-4Search in Google Scholar
Devi DY, Singh CS, Rao CD, Namsa ND. Genetic diversity and prevalence of group A rotavirus infection in children of Imphal, Manipur, India: A hospital-based surveillance study conducted during December 2015 to March 2019. Vaccine X. 2025;23:100614. https://doi.org/10.1016/j.jvacx.2025.100614DeviDYSinghCSRaoCDNamsaND.Genetic diversity and prevalence of group A rotavirus infection in children of Imphal, Manipur, India: A hospital-based surveillance study conducted during December 2015 to March 2019. Vaccine X. 2025;23:100614. https://doi.org/10.1016/j.jvacx.2025.100614Search in Google Scholar
Elkady G, Zhu J, Peng Q, Chen M, Liu X, Chen Y, Hu C, Chen H, Guo A. Isolation and whole protein characterization of species A and B bovine rotaviruses from Chinese calves. Infection, Genetics and Evolution. 2021;89:104715. https://doi.org/10.1016/j.meegid.2021.104715ElkadyGZhuJPengQChenMLiuXChenYHuCChenHGuoA.Isolation and whole protein characterization of species A and B bovine rotaviruses from Chinese calves. Infection, Genetics and Evolution. 2021;89:104715. https://doi.org/10.1016/j.mee-gid.2021.104715Search in Google Scholar
Fujii Y, Shimoike T, Takagi H, Murakami K, Todaka-Takai R, Park Y, Katayama K. Amplification of all 11 RNA segments of group A rotaviruses based on reverse transcription polymerase chain reaction. Microbiol Immunol. 2012;56(9):630–638. https://doi.org/10.1111/j.1348-0421.2012.00479.xFujiiYShimoikeTTakagiHMurakamiKTodaka-TakaiRParkYKatayamaK.Amplification of all 11 RNA segments of group A rotaviruses based on reverse transcription polymerase chain reaction. Microbiol Immunol. 2012;56(9):630–638. https://doi.org/10.1111/j.1348-0421.2012.00479.xSearch in Google Scholar
Hasan MA, Kabir MH, Miyaoka Y, Yamaguchi M, Takehara K. G and P genotype profiles of rotavirus a field strains circulating in a vaccinated bovine farm as parameters for assessing biosecurity level. J Vet Med Sci. 2022;84(7):929–937. https://doi.org/10.1292/jvms.22-0026HasanMAKabirMHMiyaokaYYamaguchiMTakeharaK.G and P genotype profiles of rotavirus a field strains circulating in a vaccinated bovine farm as parameters for assessing biosecurity level. J Vet Med Sci. 2022;84(7):929–937. https://doi.org/10.1292/jvms.22-0026Search in Google Scholar
Huang Y, Li Z, Fu Y, Wang SQ, Kang M, Meng R. Diagnosis of bovine rotavirus: an overview of currently available methods. Front Microbiol. 2025;16:1550601. https://doi.org/10.3389/fmicb.2025.1550601HuangYLiZFuYWangSQKangMMengR.Diagnosis of bovine rotavirus: an overview of currently available methods. Front Microbiol. 2025;16:1550601. https://doi.org/10.3389/fmicb.2025.1550601Search in Google Scholar
Komoto S, Adah MI, Ide T, Yoshikawa T, Taniguchi K. Whole genomic analysis of human and bovine G8P[1] rotavirus strains isolated in Nigeria provides evidence for direct bovine-to-human interspecies transmission. Infect Genet Evol. 2016;43:424–433. https://doi.org/10.1016/j.meegid.2016.06.023KomotoSAdahMIIdeTYoshikawaTTaniguchiK.Whole genomic analysis of human and bovine G8P[1] rotavirus strains isolated in Nigeria provides evidence for direct bovine-to-human interspecies transmission. Infect Genet Evol. 2016;43:424–433. https://doi.org/10.1016/j.meegid.2016.06.023Search in Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874. https://doi.org/10.1093/molbev/msw054KumarSStecherGTamuraK.MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874. https://doi.org/10.1093/molbev/msw054Search in Google Scholar
Li C, Wang X, Zhu Q, Sun D. Isolation and identification of BRV G6P[1] strain in Heilongjiang province, Northeast China. Front Vet Sci. 2024a;11:1416465. https://doi.org/10.3389/fvets.2024.1416465LiCWangXZhuQSunD.Isolation and identification of BRV G6P[1] strain in Heilongjiang province, Northeast China. Front Vet Sci. 2024a;11:1416465. https://doi.org/10.3389/fvets.2024.1416465Search in Google Scholar
Li J, Peng J, Zeng Y, Wang Y, Li L, Cao Y, Cao L, Chen QX, Ye Z, Zhou D, et al. Isolation of a feline-derived feline panleukopenia virus with an A300P substitution in the VP2 protein and confirmation of its pathogenicity in dogs. Anim Dis. 2024b;4(1):5. https://doi.org/10.1186/s44149-023-00108-5LiJPengJZengYWangYLiLCaoYCaoLChenQXYeZZhouDIsolation of a feline-derived feline panleukopenia virus with an A300P substitution in the VP2 protein and confirmation of its pathogenicity in dogs. Anim Dis. 2024b;4(1):5. https://doi.org/10.1186/s44149-023-00108-5Search in Google Scholar
Li Y, Wang S, Liang F, Teng S, Wang F. Prevalence and genetic diversity of rotavirus among children under 5 years of age in China: A meta-analysis. Front Immunol. 2024c;15:1364429. https://doi. org/10.3389/fimmu.2024.1364429LiYWangSLiangFTengSWangF.Prevalence and genetic diversity of rotavirus among children under 5 years of age in China: A meta-analysis. Front Immunol. 2024c;15:1364429. https://doi.org/10.3389/fimmu.2024.1364429Search in Google Scholar
Liu X, Yan N, Yue H, Wang Y, Zhang B, Tang C. Detection and molecular characteristics of bovine rotavirus A in dairy calves in China. J Vet Sci. 2021;22(5):e69. https://doi.org/10.4142/jvs.2021.22.e69LiuXYanNYueHWangYZhangBTangC.Detection and molecular characteristics of bovine rotavirus A in dairy calves in China. J Vet Sci. 2021;22(5):e69. https://doi.org/10.4142/jvs.2021.22.e69Search in Google Scholar
Louge Uriarte EL, Badaracco A, Spetter MJ, Miño S, Armendano JI, Zeller M, Heylen E, Späth E, Leunda MR, Moreira AR, et al. Molecular Epidemiology of Rotavirus A in Calves: Evolutionary Analysis of a Bovine G8P[11] Strain and Spatio-Temporal Dynamics of G6 Lineages in the Americas. Viruses. 2023;15(10):2115. https://doi.org/10.3390/v15102115Louge UriarteELBadaraccoASpetterMJMiñoSArmendanoJIZellerMHeylenESpäthELeundaMRMoreiraARMolecular Epidemiology of Rotavirus A in Calves: Evolutionary Analysis of a Bovine G8P[11] Strain and Spatio-Temporal Dynamics of G6 Lineages in the Americas. Viruses. 2023;15(10):2115. https://doi.org/10.3390/v15102115Search in Google Scholar
Niu X, Liu Q, Wang P, Zhang G, Jiang L, Zhang S, Zeng J, Yu Y, Wang Y, Li Y. Establishment of an indirect ELISA method for the detection of the bovine rotavirus VP6 protein. Animals. 2024;14(2):271. https://doi.org/10.3390/ani14020271NiuXLiuQWangPZhangGJiangLZhangSZengJYuYWangYLiY.Establishment of an indirect ELISA method for the detection of the bovine rotavirus VP6 protein. Animals. 2024;14(2):271. https://doi.org/10.3390/ani14020271Search in Google Scholar
Papp H, László B, Jakab F, Ganesh B, De Grazia S, Matthijnssens J, Ciarlet M, Martella V, Bányai K. Review of group A rotavirus strains reported in swine and cattle. Vet Microbiol. 2013;165(3- 4):190–199. https://doi.org/10.1016/j.vetmic.2013.03.020PappHLászlóBJakabFGaneshBDe GraziaSMatthijnssensJCiarletMMartellaVBányaiK.Review of group A rotavirus strains reported in swine and cattle. Vet Microbiol. 2013;165(3- 4):190–199. https://doi.org/10.1016/j.vetmic.2013.03.020Search in Google Scholar
Park GN, Choe S, Cha RM, Shin J, Kim KS, An BH, Kim SY, Hyun BH, An DJ. Genetic diversity of bovine group A rotavirus strains circulating in Korean calves during 2014 and 2018. Animals. 2022;12(24):3555. https://doi.org/10.3390/ani12243555ParkGNChoeSChaRMShinJKimKSAnBHKimSYHyunBHAnDJ.Genetic diversity of bovine group A rotavirus strains circulating in Korean calves during 2014 and 2018. Animals. 2022;12(24):3555. https://doi.org/10.3390/ani12243555Search in Google Scholar
Qin YF, Gong QL, Zhang M, Sun ZY, Wang W, Wei XY, Chen Y, Zhang Y, Zhao Q, Jiang J. Prevalence of bovine rotavirus among Bovidae in China during 1984–2021: A systematic review and meta-analysis. Microb Pathog. 2022;169:105661. https://doi. org/10.1016/j.micpath.2022.105661QinYFGongQLZhangMSunZYWangWWeiXYChenYZhangYZhaoQJiangJ.Prevalence of bovine rotavirus among Bovidae in China during 1984–2021: A systematic review and meta-analysis. Microb Pathog. 2022;169:105661. https://doi.org/10.1016/j.micpath.2022.105661Search in Google Scholar
Reju S, Srikanth P, Selvarajan S, Thomas RK, Barani R, Amboiram P, Palani G, Kang G. A shift in circulating rotaviral genotypes among hospitalized neonates. Sci Rep. 2022;12(1):2842. https://doi. org/10.1038/s41598-022-06506-yRejuSSrikanthPSelvarajanSThomasRKBaraniRAmboiramPPalaniGKangG.A shift in circulating rotaviral genotypes among hospitalized neonates. Sci Rep. 2022;12(1):2842. https://doi.org/10.1038/s41598-022-06506-ySearch in Google Scholar
Shin J, Park GN, Choe S, Cha RM, Kim KS, An BH, Kim SY, Moon SH, Hyun BH, An DJ. Phylogenetic analysis of G and P genotypes of bovine group A rotavirus strains isolated from diarrheic Vietnam cows in 2017 and 2018. Animals. 2023;13(14):2314. https://doi.org/10.3390/ani13142314ShinJParkGNChoeSChaRMKimKSAnBHKimSYMoonSHHyunBHAnDJ.Phylogenetic analysis of G and P genotypes of bovine group A rotavirus strains isolated from diarrheic Vietnam cows in 2017 and 2018. Animals. 2023;13(14):2314. https://doi.org/10.3390/ani13142314Search in Google Scholar
Smith DR. Field disease diagnostic investigation of neonatal calf diarrhea. Vet Clin North Am Food Anim Pract. 2012;28(3):465– 481. https://doi.org/10.1016/j.cvfa.2012.07.010SmithDR.Field disease diagnostic investigation of neonatal calf diarrhea. Vet Clin North Am Food Anim Pract. 2012;28(3):465– 481. https://doi.org/10.1016/j.cvfa.2012.07.010Search in Google Scholar
Strydom A, Donato CM, Nyaga MM, Boene SS, Peenze I, Mogotsi MT, João ED, Munlela B, Potgieter AC, Seheri ML, et al. Genetic characterisation of South African and Mozambican bovine rotaviruses reveals a typical bovine-like artiodactyl constellation derived through multiple reassortment events. Pathogens. 2021;10(10):1308. https://doi.org/10.3390/pathogens10101308StrydomADonatoCMNyagaMMBoeneSSPeenzeIMogotsiMTJoãoEDMunlelaBPotgieterACSeheriMLGenetic characterisation of South African and Mozambican bovine rotaviruses reveals a typical bovine-like artiodactyl constellation derived through multiple reassortment events. Pathogens. 2021;10(10):1308. https://doi.org/10.3390/pathogens10101308Search in Google Scholar
Swiatek DL, Palombo EA, Lee A, Coventry MJ, Britz ML, Kirkwood CD. Detection and analysis of bovine rotavirus strains circulating in Australian calves during 2004 and 2005. Vet Microbiol. 2010;140(1–2):56–62. https://doi.org/10.1016/j.vetmic.2009.07.020SwiatekDLPalomboEALeeACoventryMJBritzMLKirkwoodCD.Detection and analysis of bovine rotavirus strains circulating in Australian calves during 2004 and 2005. Vet Microbiol. 2010;140(1–2):56–62. https://doi.org/10.1016/j.vetmic.2009.07.020Search in Google Scholar
Uddin Ahmed N, Khair A, Hassan J, Khan MAHNA, Rahman AKMA, Hoque W, Rahman M, Kobayashi N, Ward MP, Alam MM. Risk factors for bovine rotavirus infection and genotyping of bovine rotavirus in diarrheic calves in Bangladesh. PLoS One. 2022;17(2):e0264577. https://doi.org/10.1371/Journal. pone.0264577Uddin AhmedNKhairAHassanJKhanMAHNARahmanAKMAHoqueWRahmanMKobayashiNWardMPAlamMM.Risk factors for bovine rotavirus infection and genotyping of bovine rotavirus in diarrheic calves in Bangladesh. PLoS One. 2022;17(2):e0264577. https://doi.org/10.1371/Journal.pone.0264577Search in Google Scholar
Urie NJ, Lombard JE, Shivley CB, Adams AE, Kopral CA, Santin M. Preweaned heifer management on US dairy operations: Part III. Factors associated with Cryptosporidium and Giardia in preweaned dairy heifer calves. J Dairy Sci. 2018;101(10):9199–9213. https://doi.org/10.3168/jds.2017-14060UrieNJLombardJEShivleyCBAdamsAEKopralCASantinM.Preweaned heifer management on US dairy operations: Part III. Factors associated with Cryptosporidium and Giardia in preweaned dairy heifer calves. J Dairy Sci. 2018;101(10):9199–9213. https://doi.org/10.3168/jds.2017-14060Search in Google Scholar
Yan N, Li R, Wang Y, Zhang B, Yue H, Tang C. High prevalence and genomic characteristics of G6P[1] Bovine Rotavirus A in yak in China. J Gen Virol. 2020;101(7):701–711. https://doi.org/10.1099/jgv.0.001426YanNLiRWangYZhangBYueHTangC.High prevalence and genomic characteristics of G6P[1] Bovine Rotavirus A in yak in China. J Gen Virol. 2020;101(7):701–711. https://doi.org/10.1099/jgv.0.001426Search in Google Scholar