State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and TechnologyHuainan, China
State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and TechnologyHuainan, China
State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and TechnologyHuainan, China
State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and TechnologyHuainan, China
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Allison SD, Martiny JB. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008 Aug; 105 (Suppl_1):11512–11519. https://doi.org/10.1073/pnas.0801925105AllisonSDMartinyJB.Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008Aug; 105 (Suppl_1):11512–11519. https://doi.org/10.1073/pnas.0801925105Search in Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019 Aug;37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9BolyenERideoutJRDillonMRBokulichNAAbnetCCAl-GhalithGAAlexanderHAlmEJArumugamMAsnicarFReproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019Aug;37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9Search in Google Scholar
Botta LS, Delforno TP, Rabelo CABS, Silva EL, Varesche MBA. Microbial community analyses by high-throughput sequencing of rumen microorganisms fermenting office paper in mesophilic and thermophilic lysimeters. Process Saf Environ Prot. 2020 Apr; 136:182–193. https://doi.org/10.1016/j.psep.2020.01.030BottaLSDelfornoTPRabeloCABSSilvaELVarescheMBA.Microbial community analyses by high-throughput sequencing of rumen microorganisms fermenting office paper in mesophilic and thermophilic lysimeters. Process Saf Environ Prot. 2020Apr; 136:182–193. https://doi.org/10.1016/j.psep.2020.01.030Search in Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581–583. https://doi.org/10.1038/nmeth.3869CallahanBJMcMurdiePJRosenMJHanAWJohnsonAJHolmesSP.DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016Jul;13(7):581–583. https://doi.org/10.1038/nmeth.3869Search in Google Scholar
Chai J, Wang LQ. Analysis and design of interruptible gas contract in China under energy market reform. Sustainability. 2020 Jan;12(2):506. https://doi.org/10.3390/su12020506ChaiJWangLQ.Analysis and design of interruptible gas contract in China under energy market reform. Sustainability. 2020Jan;12(2):506. https://doi.org/10.3390/su12020506Search in Google Scholar
Chew KJ. The future of oil: Unconventional fossil fuels. Philos. Trans. R. Soc. A. 2014 Jan;372(2006):20120324. https://doi.org/10.1098/rsta.2012.0324ChewKJ.The future of oil: Unconventional fossil fuels. Philos. Trans. R. Soc. A. 2014Jan;372(2006):20120324. https://doi.org/10.1098/rsta.2012.0324Search in Google Scholar
Chua RW, Song KP, Ting ASY. Comparative analysis of antimicrobial compounds from endophytic Buergenerula spartinae from orchid. Antonie van Leeuwenhoek. 2023 Oct;116(10):1057–1072. https://doi.org/10.1007/s10482-023-01870-9ChuaRWSongKPTingASY.Comparative analysis of antimicrobial compounds from endophytic Buergenerula spartinae from orchid. Antonie van Leeuwenhoek. 2023Oct;116(10):1057–1072. https://doi.org/10.1007/s10482-023-01870-9Search in Google Scholar
Fakoussa RM, Hofrichter M. Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol. 1999 Jul;52(1):25–40. https://doi.org/10.1007/s002530051483FakoussaRMHofrichterM.Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol. 1999Jul;52(1):25–40. https://doi.org/10.1007/s002530051483Search in Google Scholar
Feng L, Wang Y, Yang J, Sun YF, Li YW, Ye ZH, Lin HB, Yang K. Overview of the preparation method, structure and function, and application of natural peptides and polypeptides. Biomed Pharma-cother. 2022 Sep;153:113493. https://doi.org/10.1016/j.biopha.2022.113493FengLWangYYangJSunYFLiYWYeZHLinHBYangK.Overview of the preparation method, structure and function, and application of natural peptides and polypeptides. Biomed Pharma-cother. 2022Sep;153:113493. https://doi.org/10.1016/j.biopha.2022.113493Search in Google Scholar
Ferraz Júnior ADN, Etchebehere C, Zaiat M. High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresour Technol. 2015 Jun;186:81–88. https://doi.org/10.1016/j.biortech.2015.03.035Ferraz JúniorADNEtchebehereCZaiatM.High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresour Technol. 2015Jun;186:81–88. https://doi.org/10.1016/j.biortech.2015.03.035Search in Google Scholar
FitzGerald JA, Wall DM, Jackson SA, Murphy JD, Dobson ADW. Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage. Renewable Energy. 2019 Aug;138:980–986. https://doi.org/10.1016/j.renene.2019.02.051FitzGeraldJAWallDMJacksonSAMurphyJDDobsonADW.Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage. Renewable Energy. 2019Aug;138:980–986. https://doi.org/10.1016/j.renene.2019.02.051Search in Google Scholar
Fosses A, Maté M, Franche N, Liu N, Denis Y, Borne R, de Philip P, Fierobe HP, Perret S. A seven-gene cluster in Ruminiclostridium cellulolyticum is essential for signalization, uptake and catabolism of the degradation products of cellulose hydrolysis. Biotechnol Biofuels. 2017 Oct;10:250. https://doi.org/10.1186/s13068-017-0933-7FossesAMatéMFrancheNLiuNDenisYBorneRde PhilipPFierobeHPPerretS.A seven-gene cluster in Ruminiclostridium cellulolyticum is essential for signalization, uptake and catabolism of the degradation products of cellulose hydrolysis. Biotechnol Biofuels. 2017Oct;10:250. https://doi.org/10.1186/s13068-017-0933-7Search in Google Scholar
Gao J, Zhang Y, Meng D, Jiao T, Qin X, Bai G, Liang P. Effect of ash and dolomite on the migration of sulfur from coal pyrolysis volatiles. J Anal Appl Pyrolysis. 2019 Jun;140:349–354. https://doi.org/10.1016/j.jaap.2019.04.013GaoJZhangYMengDJiaoTQinXBaiGLiangP.Effect of ash and dolomite on the migration of sulfur from coal pyrolysis volatiles. J Anal Appl Pyrolysis. 2019Jun;140:349–354. https://doi.org/10.1016/j.jaap.2019.04.013Search in Google Scholar
Guo H, Yu Z, Zhang H. Phylogenetic diversity of microbial communities associated with coalbed methane gas from Eastern Ordos Basin, China. Int J Coal Geol. 2015 Oct;150–151:120–126. https://doi.org/10.1016/j.coal.2015.08.012GuoHYuZZhangH.Phylogenetic diversity of microbial communities associated with coalbed methane gas from Eastern Ordos Basin, China. Int J Coal Geol. 2015Oct;150–151:120–126. https://doi.org/10.1016/j.coal.2015.08.012Search in Google Scholar
Gutekunst CN, Liebner S, Jenner AK, Knorr KH, Unger V, Koebsch F, Racasa ED, Yang SZ, Böttcher ME, Janssen M, et al. Effects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen. Biogeosciences. 2022 Aug; 19(15):3625–3648. https://doi.org/10.5194/bg-19-3625-2022GutekunstCNLiebnerSJennerAKKnorrKHUngerVKoebschFRacasaEDYangSZBöttcherMEJanssenMEffects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen. Biogeosciences. 2022Aug; 19(15):3625–3648. https://doi.org/10.5194/bg-19-3625-2022Search in Google Scholar
Hierholtzer A, Akunna JC. Modelling sodium inhibition on the anaerobic digestion process. Water Sci Technol. 2012;66(7):1565–1573. https://doi.org/10.2166/wst.2012.345HierholtzerAAkunnaJC.Modelling sodium inhibition on the anaerobic digestion process. Water Sci Technol. 2012;66(7):1565–1573. https://doi.org/10.2166/wst.2012.345Search in Google Scholar
Hong H, Kim SJ, Min UG, Lee YJ, Kim SG, Roh SW, Kim JG, Na JG, Rhee SK.Anaerosolibacter carboniphilus gen. nov., sp. nov., a strictly anaerobic iron-reducing bacterium isolated from coal-contaminated soil. Int J Syst Evol Microbiol. 2015 May;65(Pt 5): 1480–1485. https://doi.org/10.1099/ijs.0.000124HongHKimSJMinUGLeeYJKimSGRohSWKimJGNaJGRheeSK.Anaerosolibacter carboniphilus gen. nov., sp. nov., a strictly anaerobic iron-reducing bacterium isolated from coal-contaminated soil. Int J Syst Evol Microbiol. 2015May;65(Pt 5): 1480–1485. https://doi.org/10.1099/ijs.0.000124Search in Google Scholar
Huang S, Wu S, Wu Y, Gao J. Physicochemical properties and gasification reactivity of chars from different carbonization processes. Energy Sources Part A. 2014;36(14):1588–1595. https://doi.org/10.1080/15567036.2011.613893HuangSWuSWuYGaoJ.Physicochemical properties and gasification reactivity of chars from different carbonization processes. Energy Sources Part A. 2014;36(14):1588–1595. https://doi.org/10.1080/15567036.2011.613893Search in Google Scholar
Huang ZX, Urynowicz MA, Colberg PJS. Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate. Fuel. 2013 Sep;111:813–819. https://doi.org/10.1016/j.fuel.2013.03.079HuangZXUrynowiczMAColbergPJS.Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate. Fuel. 2013Sep;111:813–819. https://doi.org/10.1016/j.fuel.2013.03.079Search in Google Scholar
Ji Y, Yao Q, Cao W, Zhao Y. A probable origin of dibenzothiophenes in coals and oils. Energies. 2021 Jan;14(1):234. https://doi.org/10.3390/en14010234JiYYaoQCaoWZhaoY.A probable origin of dibenzothiophenes in coals and oils. Energies. 2021Jan;14(1):234. https://doi.org/10.3390/en14010234Search in Google Scholar
Jiang J, Wu P, Sun Y, Guo Y, Song B, Huang Y, Xing T, Li L. Comparison of microbial communities during anaerobic digestion of kitchen waste: Effect of substrate sources and temperatures. Bio-resour Technol. 2020 Dec;317:124016. https://doi.org/10.1016/j.biortech.2020.124016JiangJWuPSunYGuoYSongBHuangYXingTLiL.Comparison of microbial communities during anaerobic digestion of kitchen waste: Effect of substrate sources and temperatures. Bio-resour Technol. 2020Dec;317:124016. https://doi.org/10.1016/j.biortech.2020.124016Search in Google Scholar
Jung H, Kim J, Lee C. Temperature effects on methanogenesis and sulfidogenesis during anaerobic digestion of sulfur-rich macroalgal biomass in sequencing batch reactors. microorganisms. 2019 Dec; 7(12):682. https://doi.org/10.3390/microorganisms7120682JungHKimJLeeC.Temperature effects on methanogenesis and sulfidogenesis during anaerobic digestion of sulfur-rich macroalgal biomass in sequencing batch reactors. microorganisms. 2019Dec; 7(12):682. https://doi.org/10.3390/microorganisms7120682Search in Google Scholar
Kotelnikov VI, Saryglar CA, Chysyma RB. Microorganisms in coal desulfurization (Review). Appl Biochem Microbiol. 2020 Sep; 56(5):521–525. https://doi.org/10.1134/s0003683820050105KotelnikovVISaryglarCAChysymaRB.Microorganisms in coal desulfurization (Review). Appl Biochem Microbiol. 2020Sep; 56(5):521–525. https://doi.org/10.1134/s0003683820050105Search in Google Scholar
Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, Knight R. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011 Dec;13(1):47–58. https://doi.org/10.1038/nrg3129KuczynskiJLauberCLWaltersWAParfreyLWClementeJCGeversDKnightR.Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011Dec;13(1):47–58. https://doi.org/10.1038/nrg3129Search in Google Scholar
Li T, Li J, Zhang H, Sun K, Xiao J. DFT study on the dibenzothiophene pyrolysis mechanism in petroleum. Energy Fuels. 2019 Sep; 33(9):8876–8895. https://doi.org/10.1021/acs.energyfuels.9b01498LiTLiJZhangHSunKXiaoJ.DFT study on the dibenzothiophene pyrolysis mechanism in petroleum. Energy Fuels. 2019Sep; 33(9):8876–8895. https://doi.org/10.1021/acs.energyfuels.9b01498Search in Google Scholar
Li Y, Liu B, Tu Q, Xue S, Liu X, Wu Z, An S, Chen J, Wang Z. The ecological roles of assembling genomes for Bacillales and Clostridiales in coal seams. FEMS Microbiol Lett. 2022 Jul;369(1):fnac053. https://doi.org/10.1093/femsle/fnac053LiYLiuBTuQXueSLiuXWuZAnSChenJWangZ.The ecological roles of assembling genomes for Bacillales and Clostridiales in coal seams. FEMS Microbiol Lett. 2022Jul;369(1):fnac053. https://doi.org/10.1093/femsle/fnac053Search in Google Scholar
Liu F, Guo H, Wang Q, Haider R, Urynowicz MA, Fallgren PH, Jin S, Tang M, Chen B, Huang Z. Characterization of organic compounds from hydrogen peroxide-treated subbituminous coal and their composition changes during microbial methanogenesis. Fuel. 2019 Feb;237:1209–1216. https://doi.org/10.1016/j fuel.2018.10.043LiuFGuoHWangQHaiderRUrynowiczMAFallgrenPHJinSTangMChenBHuangZ.Characterization of organic compounds from hydrogen peroxide-treated subbituminous coal and their composition changes during microbial methanogenesis. Fuel. 2019Feb;237:1209–1216. https://doi.org/10.1016/j fuel.2018.10.043Search in Google Scholar
Marañón E, Castrillón L, Quiroga G, Fernández-Nava Y, Gómez L, García MM. Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag. 2012 Oct; 32(10): 1821–1825. https://doi.org/10.1016/j.wasman.2012.05.033MarañónECastrillónLQuirogaGFernández-NavaYGómezLGarcíaMM.Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag. 2012Oct; 32(10): 1821–1825. https://doi.org/10.1016/j.wasman.2012.05.033Search in Google Scholar
Meng F, Yu J, Tahmasebi A, Han Y, Zhao H, Lucas J, Wall T. Characteristics of chars from low-temperature pyrolysis of lignite. Energy Fuels. 2014 Jan;28(1):275–284. https://doi.org/10.1021/ef401423sMengFYuJTahmasebiAHanYZhaoHLucasJWallT.Characteristics of chars from low-temperature pyrolysis of lignite. Energy Fuels. 2014Jan;28(1):275–284. https://doi.org/10.1021/ef401423sSearch in Google Scholar
Mishra S, Pradhan N, Panda S, Akcil A. Biodegradation of dibenzothiophene and its application in the production of clean coal. Fuel Process Technol. 2016 Nov;152:325–342. https://doi.org/10.1016/j.fuproc.2016.06.025MishraSPradhanNPandaSAkcilA.Biodegradation of dibenzothiophene and its application in the production of clean coal. Fuel Process Technol. 2016Nov;152:325–342. https://doi.org/10.1016/j.fuproc.2016.06.025Search in Google Scholar
Olivera C, Tondo ML, Girardi V, Fattobene L, Herrero MS, Pérez LM, Salvatierra LM. Early-stage response in anaerobic bioreactors due to high sulfate loads: Hydrogen sulfide yield and other organic volatile sulfur compounds as a sign of microbial community modifications. Bioresour Technol. 2022 Apr;350:126947. https://doi.org/10.1016/j.biortech.2022.126947OliveraCTondoMLGirardiVFattobeneLHerreroMSPérezLMSalvatierraLM.Early-stage response in anaerobic bioreactors due to high sulfate loads: Hydrogen sulfide yield and other organic volatile sulfur compounds as a sign of microbial community modifications. Bioresour Technol. 2022Apr;350:126947. https://doi.org/10.1016/j.biortech.2022.126947Search in Google Scholar
Opara A, Adams DJ, Free ML, McLennan J, Hamilton J. Microbial production of methane and carbon dioxide from lignite, bituminous coal, and coal waste materials. Int J Coal Geol. 2012 Jul;96–97:1–8. https://doi.org/10.1016/j.coal.2012.02.010OparaAAdamsDJFreeMLMcLennanJHamiltonJ.Microbial production of methane and carbon dioxide from lignite, bituminous coal, and coal waste materials. Int J Coal Geol. 2012Jul;96–97:1–8. https://doi.org/10.1016/j.coal.2012.02.010Search in Google Scholar
Park SY, Liang Y. Biogenic methane production from coal: A review on recent research and development on microbially enhanced coalbed methane (MECBM). Fuel. 2016 Feb;166:258–267. https://doi.org/10.1016/j.fuel.2015.10.121ParkSYLiangY.Biogenic methane production from coal: A review on recent research and development on microbially enhanced coalbed methane (MECBM). Fuel. 2016Feb;166:258–267. https://doi.org/10.1016/j.fuel.2015.10.121Search in Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013 Jan;41(Database issue):D590–D596. https://doi.org/10.1093/nar/gks1219QuastCPruesseEYilmazPGerkenJSchweerTYarzaPPepliesJGlöcknerFO.The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013Jan;41(Database issue):D590–D596. https://doi.org/10.1093/nar/gks1219Search in Google Scholar
R Core Team. A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2021 [cited 2024 Mar 07]. Available from https://www.r-project.orgR Core Team. A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2021 [cited 2024 Mar 07]. Available from https://www.r-project.orgSearch in Google Scholar
Rompalski P, Smolinski A, Krzton H, Gazdowicz J, Howaniec N, Róg L. Determination of mercury content in hard coal and fly ash using X-ray diffraction and scanning electron microscopy coupled with chemical analysis. Arabian J Chem. 2019 Dec;12(8):3927–3942. https://doi.org/10.1016/j.arabjc.2016.02.016RompalskiPSmolinskiAKrztonHGazdowiczJHowaniecNRógL.Determination of mercury content in hard coal and fly ash using X-ray diffraction and scanning electron microscopy coupled with chemical analysis. Arabian J Chem. 2019Dec;12(8):3927–3942. https://doi.org/10.1016/j.arabjc.2016.02.016Search in Google Scholar
Tikariha H, Purohit HJ. Assembling a genome for novel nitrogenfixing bacteria with capabilities for utilization of aromatic hydrocarbons. Genomics. 2019 Dec;111(6):1824–1830. https://doi.org/10.1016/j.ygeno.2018.12.005TikarihaHPurohitHJ.Assembling a genome for novel nitrogenfixing bacteria with capabilities for utilization of aromatic hydrocarbons. Genomics. 2019Dec;111(6):1824–1830. https://doi.org/10.1016/j.ygeno.2018.12.005Search in Google Scholar
Vick SHW, Greenfield P, Tran-Dinh N, Tetu SG, Midgley DJ, Paulsen IT. The Coal Seam Microbiome (CSMB) reference set, a lingua franca for the microbial coal-to-methane community. Int J Coal Geol. 2018 Feb;186:41–50. https://doi.org/10.1016/j.coal.2017.12.003VickSHWGreenfieldPTran-DinhNTetuSGMidgleyDJPaulsenIT.The Coal Seam Microbiome (CSMB) reference set, a lingua franca for the microbial coal-to-methane community. Int J Coal Geol. 2018Feb;186:41–50. https://doi.org/10.1016/j.coal.2017.12.003Search in Google Scholar
Wallenstein MD, Hall EK. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry. 2012 Jul;109(1–3):35–47. https://doi.org/10.1007/s10533-011-9641-8WallensteinMDHallEK.A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry. 2012Jul;109(1–3):35–47. https://doi.org/10.1007/s10533-011-9641-8Search in Google Scholar
Wang B, Tai C, Wu L, Chen L, Liu J, Hu B, Song D. Methane production from lignite through the combined effects of exogenous aerobic and anaerobic microflora. Int J Coal Geol. 2017 Mar;173: 84–93. https://doi.org/10.1016/j.coal.2017.02.012WangBTaiCWuLChenLLiuJHuBSongD.Methane production from lignite through the combined effects of exogenous aerobic and anaerobic microflora. Int J Coal Geol. 2017Mar;173: 84–93. https://doi.org/10.1016/j.coal.2017.02.012Search in Google Scholar
Wang H, Xu J, Liu X, Sheng L, Zhang D, Li L, Wang A. Study on the pollution status and control measures for the livestock and poultry breeding industry in northeastern China. Environ Sci Pollut Res Int. 2018a Feb;25(5):4435–4445. https://doi.org/10.1007/s11356-017-0751-2WangHXuJLiuXShengLZhangDLiLWangA.Study on the pollution status and control measures for the livestock and poultry breeding industry in northeastern China. Environ Sci Pollut Res Int. 2018aFeb;25(5):4435–4445. https://doi.org/10.1007/s11356-017-0751-2Search in Google Scholar
Wang H, Xu J, Sheng L, Liu X. Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production. Energy. 2018b Dec;165:411–418. https://doi.org/10.1016/j.energy.2018.09.196WangHXuJShengLLiuX.Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production. Energy. 2018bDec;165:411–418. https://doi.org/10.1016/j.energy.2018.09.196Search in Google Scholar
Wang L, Ji G, Huang S. Contribution of the Kodama and 4S pathways to the dibenzothiophene biodegradation in different coastal wetlands under different C/N ratios. J Environ Sci (China). 2019 Feb;76:217–226. https://doi.org/10.1016/j.jes.2018.04.029WangLJiGHuangS.Contribution of the Kodama and 4S pathways to the dibenzothiophene biodegradation in different coastal wetlands under different C/N ratios. J Environ Sci (China). 2019Feb;76:217–226. https://doi.org/10.1016/j.jes.2018.04.029Search in Google Scholar
Wang Y, Bao Y, Hu Y. Recent progress in improving the yield of microbially enhanced coalbed methane production. Energy Rep. 2023 Dec;9:2810–2819. https://doi.org/10.1016/j.egyr.2023.01.127WangYBaoYHuY.Recent progress in improving the yield of microbially enhanced coalbed methane production. Energy Rep. 2023Dec;9:2810–2819. https://doi.org/10.1016/j.egyr.2023.01.127Search in Google Scholar
Xia D, Gu P, Chen Z, Chen L, Wei G, Wang Z, Cheng S, Zhang Y. Control mechanism of microbial degradation on the physical properties of a coal reservoir. Processes. 2023 Apr;11(5):1347. https://doi.org/10.3390/pr11051347XiaDGuPChenZChenLWeiGWangZChengSZhangY.Control mechanism of microbial degradation on the physical properties of a coal reservoir. Processes. 2023Apr;11(5):1347. https://doi.org/10.3390/pr11051347Search in Google Scholar
Zhang J, Bi Z, Liang Y. Development of a nutrient recipe for enhancing methane release from coal in the Illinois basin. Int J Coal Geol. 2018a Feb;187:11–19. https://doi.org/10.1016/j.coal.2018.01.001ZhangJBiZLiangY.Development of a nutrient recipe for enhancing methane release from coal in the Illinois basin. Int J Coal Geol. 2018aFeb;187:11–19. https://doi.org/10.1016/j.coal.2018.01.001Search in Google Scholar
Zhang J, Liang Y, Pandey R, Harpalani S. Characterizing microbial communities dedicated for conversion of coal to methane in situ and ex situ. Int J Coal Geol. 2015 Jul;146:145–154. https://doi.org/10.1016/j.coal.2015.05.001ZhangJLiangYPandeyRHarpalaniS.Characterizing microbial communities dedicated for conversion of coal to methane in situ and ex situ. Int J Coal Geol. 2015Jul;146:145–154. https://doi.org/10.1016/j.coal.2015.05.001Search in Google Scholar
Zhang M, Guo H, Xia D, Dong Z, Liu X, Zhao W, Jia J, Yin X. Metagenomic insight of corn straw conditioning on substrates metabolism during coal anaerobic fermentation. Sci Total Environ. 2022 Feb;808:152220. https://doi.org/10.1016/j.scitotenv.2021.152220ZhangMGuoHXiaDDongZLiuXZhaoWJiaJYinX.Metagenomic insight of corn straw conditioning on substrates metabolism during coal anaerobic fermentation. Sci Total Environ. 2022Feb;808:152220. https://doi.org/10.1016/j.scitotenv.2021.152220Search in Google Scholar
Zhang QQ, Yang GF, Sun KK, Tian GM, Jin RC. Insights into the effects of bio-augmentation on the granule-based anammox process under continuous oxytetracycline stress: Performance and microflora structure. Chem Eng J. 2018b Sep;348:503–513. https://doi.org/10.1016/j.cej.2018.04.204ZhangQQYangGFSunKKTianGMJinRC.Insights into the effects of bio-augmentation on the granule-based anammox process under continuous oxytetracycline stress: Performance and microflora structure. Chem Eng J. 2018bSep;348:503–513. https://doi.org/10.1016/j.cej.2018.04.204Search in Google Scholar
Zhou G, Gao S, Chang D, Rees RM, Cao W. Using milk vetch (Astragalus sinicus L.) to promote rice straw decomposition by regulating enzyme activity and bacterial community. Bioresour Technol. 2021 Jan;319:124215. https://doi.org/10.1016/j.biortech.2020.124215ZhouGGaoSChangDReesRMCaoW.Using milk vetch (Astragalus sinicus L.) to promote rice straw decomposition by regulating enzyme activity and bacterial community. Bioresour Technol. 2021Jan;319:124215. https://doi.org/10.1016/j.biortech.2020.124215Search in Google Scholar