Accesso libero

The Prokaryotic Microalga Limnothrix redekei KNUA012 to Improve Aldehyde Decarbonylase Expression for Use as a Biological Resource

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Andre C, Kim SW, Yu XH, Shanklin J. Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc Natl Acad Sci USA. 2013 Feb;110(8):3191–3196. https://doi.org/10.1073/pnas.1218769110 AndreC KimSW YuXH ShanklinJ Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2 Proc Natl Acad Sci USA 2013 Feb 110 8 3191 3196 https://doi.org/10.1073/pnas.1218769110 Search in Google Scholar

Bhalamurugan GL, Valerie O, Mark L. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environ Eng Res. 2018; 23(3):229–241. https://doi.org/10.4491/eer.2017.220 BhalamuruganGL ValerieO MarkL Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review Environ Eng Res 2018 23 3 229 241 https://doi.org/10.4491/eer.2017.220 Search in Google Scholar

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. https://doi.org/10.1139/o59-099 BlighEG DyerWJ A rapid method of total lipid extraction and purification Can J Biochem Physiol 1959 Aug 37 8 911 917 https://doi.org/10.1139/o59-099 Search in Google Scholar

Burdge GC, Calder PC. Introduction to fatty acids and lipids. In: Calder PC, Waitzberg DL, KoletzkoWorld B. Intravenous lipid emulsions. World Rev Nutr Diet. vol. 112. Basel (Switzerland): S. Karger AG; 2015. p. 1–16. https://doi.org/10.1159/000365423 BurdgeGC CalderPC Introduction to fatty acids and lipids In: CalderPC WaitzbergDL KoletzkoWorldB Intravenous lipid emulsions. World Rev Nutr Diet 112 Basel (Switzerland) S. Karger AG 2015 1 16 https://doi.org/10.1159/000365423 Search in Google Scholar

Chang J, Hong JW, Chae H, Kim HS, Park KM, Lee KI, Yoon HS. Natural production of alkane by an easily harvested freshwater cyanobacterium, Phormidium autumnale KNUA026. Algae. 2013; 28(1):93–99. https://doi.org/10.4490/algae.2013.28.1.093 ChangJ HongJW ChaeH KimHS ParkKM LeeKI YoonHS Natural production of alkane by an easily harvested freshwater cyanobacterium, Phormidium autumnale KNUA026 Algae 2013 28 1 93 99 https://doi.org/10.4490/algae.2013.28.1.093 Search in Google Scholar

Cheah YT, Chan DJC. A methodological review on the characterization of microalgal biofilm and its extracellular polymeric substances. J Appl Microbiol. 2022 May;132(5):3490–3514. https://doi.org/10.1111/jam.15455 CheahYT ChanDJC A methodological review on the characterization of microalgal biofilm and its extracellular polymeric substances J Appl Microbiol 2022 May 132 5 3490 3514 https://doi.org/10.1111/jam.15455 Search in Google Scholar

Chi Z, Su CD, Lu WD. A new exopolysaccharide produced by marine Cyanothece sp. 113. Bioresour Technol. 2007 Apr;98(6):1329–1332. https://doi.org/10.1016/j.biortech.2006.05.001 ChiZ SuCD LuWD A new exopolysaccharide produced by marine Cyanothece sp. 113 Bioresour Technol 2007 Apr 98 6 1329 1332 https://doi.org/10.1016/j.biortech.2006.05.001 Search in Google Scholar

Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007 May–Jun; 25(3):294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001 ChistiY Biodiesel from microalgae Biotechnol Adv 2007 May–Jun 25 3 294 306 https://doi.org/10.1016/j.biotechadv.2007.02.001 Search in Google Scholar

Choi YJ, Lee SY. Microbial production of short-chain alkanes. Nature. 2013 Oct;502(7472):571–574. https://doi.org/10.1038/nature12536 ChoiYJ LeeSY Microbial production of short-chain alkanes Nature 2013 Oct 502 7472 571 574 https://doi.org/10.1038/nature12536 Search in Google Scholar

Clarens AF, Resurreccion EP, White MA, Colosi LM. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol. 2010 Mar;44(5):1813–1819. https://doi.org/10.1021/es902838n ClarensAF ResurreccionEP WhiteMA ColosiLM Environmental life cycle comparison of algae to other bioenergy feedstocks Environ Sci Technol 2010 Mar 44 5 1813 1819 https://doi.org/10.1021/es902838n Search in Google Scholar

Coursolle D, Lian J, Shanklin J, Zhao H. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli. Mol Biosyst. 2015 Sep;11(9):2464–2472. https://doi.org/10.1039/c5mb00268k CoursolleD LianJ ShanklinJ ZhaoH Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli Mol Biosyst 2015 Sep 11 9 2464 2472 https://doi.org/10.1039/c5mb00268k Search in Google Scholar

Dalirynezhad S, Hallajisani A, Nouri H, Golzary A. Effects of environmental factors on Chlorella sp. microalgae for biodiesel production purpose: Enhanced lipid and biomass productivity. Recent Innovations Chem. Eng. 2017;10(2):119–126. https://doi.org/10.2174/2405520410666171023144030 DalirynezhadS HallajisaniA NouriH GolzaryA Effects of environmental factors on Chlorella sp. microalgae for biodiesel production purpose: Enhanced lipid and biomass productivity Recent Innovations Chem. Eng. 2017 10 2 119 126 https://doi.org/10.2174/2405520410666171023144030 Search in Google Scholar

Duan X, Chi Z, Wang L, Wang X. Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym. 2008 Sep;73(4):587–593. https://doi.org/10.1016/j.carbpol.2007.12.028 DuanX ChiZ WangL WangX Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68 Carbohydr Polym 2008 Sep 73 4 587 593 https://doi.org/10.1016/j.carbpol.2007.12.028 Search in Google Scholar

Gao Y, Zhang H, Fan M, Jia C, Shi L, Pan X, Cao P, Zhao X, Chang W, Li M. Structural insights into catalytic mechanism and product delivery of cyanobacterial acyl-acyl carrier protein reductase. Nat Commun. 2020 Mar 23;11(1):1525. https://doi.org/10.1038/s41467-020-15268-y GaoY ZhangH FanM JiaC ShiL PanX CaoP ZhaoX ChangW LiM Structural insights into catalytic mechanism and product delivery of cyanobacterial acyl-acyl carrier protein reductase Nat Commun 2020 Mar 23 11 1 1525 https://doi.org/10.1038/s41467-020-15268-y Search in Google Scholar

Gkelis S, Rajaniemi P, Vardaka E, Moustaka-Gouni M, Lanaras T, Sivonen K. Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. Microb Ecol. 2005 Jan;49(1):176–182. https://doi.org/10.1007/s00248-003-2030-7 GkelisS RajaniemiP VardakaE Moustaka-GouniM LanarasT SivonenK Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group Microb Ecol 2005 Jan 49 1 176 182 https://doi.org/10.1007/s00248-003-2030-7 Search in Google Scholar

Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai YL, Mo B, Zong D, Smith MD, et al. Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol. 2013 Jan 18;2(1):59–62. https://doi.org/10.1021/sb300061x HargerM ZhengL MoonA AgerC AnJH ChoeC LaiYL MoB ZongD SmithMD Expanding the product profile of a microbial alkane biosynthetic pathway ACS Synth Biol 2013 Jan 18 2 1 59 62 https://doi.org/10.1021/sb300061x Search in Google Scholar

Hayashi Y, Arai M. Recent advances in the improvement of cyanobacterial enzymes for bioalkane production. Microb Cell Fact. 2022 Dec;21(1):256. https://doi.org/10.1186/s12934-022-01981-4 HayashiY AraiM Recent advances in the improvement of cyanobacterial enzymes for bioalkane production Microb Cell Fact 2022 Dec 21 1 256 https://doi.org/10.1186/s12934-022-01981-4 Search in Google Scholar

Hayashi Y, Yasugi F, Arai M. Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase. PLoS One. 2015 Apr;10(4):e0122217. https://doi.org/10.1371/journal.pone.0122217 HayashiY YasugiF AraiM Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase PLoS One 2015 Apr 10 4 e0122217 https://doi.org/10.1371/journal.pone.0122217 Search in Google Scholar

Hong JW, Jo SW, Kim OH, Jeong MR, Kim H, Park KM, Lee KI, Yoon HS. Characterization of a Korean domestic cyanobacterium Limnothrix sp. KNUA012 for biofuel feedstock. J Life Sci. 2016; 26: 460–467. https://doi.org/10.5352/JLS.2016.26.4.460 HongJW JoSW KimOH JeongMR KimH ParkKM LeeKI YoonHS Characterization of a Korean domestic cyanobacterium Limnothrix sp. KNUA012 for biofuel feedstock J Life Sci 2016 26 460 467 https://doi.org/10.5352/JLS.2016.26.4.460 Search in Google Scholar

Hong JW, Kim SA, Chang J, Yi J, Jeong J, Kim S, Kim SH, Yoon HS. Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential. Algae. 2012;27(3):197–203. https://doi.org/10.4490/algae.2012.27.3.197 HongJW KimSA ChangJ YiJ JeongJ KimS KimSH YoonHS Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential Algae 2012 27 3 197 203 https://doi.org/10.4490/algae.2012.27.3.197 Search in Google Scholar

Hoydonckx HE, De Vos DE, Chavan, SA, Jacobs PA. Esterification and transesterification of renewable chemicals. Topic Catal. 2004; 27(1–4):83–96. https://doi.org/10.1023/B:TOCA.0000013543.96438.1a HoydonckxHE De VosDE ChavanSA JacobsPA Esterification and transesterification of renewable chemicals Topic Catal 2004 27 1–4 83 96 https://doi.org/10.1023/B:TOCA.0000013543.96438.1a Search in Google Scholar

Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008 May;54(4):621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x HuQ SommerfeldM JarvisE GhirardiM PosewitzM SeibertM DarzinsA Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances Plant J 2008 May 54 4 621 639 https://doi.org/10.1111/j.1365-313X.2008.03492.x Search in Google Scholar

Kang MK, Zhou YJ, Buijs NA, Nielsen J. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae. Microb Cell Fact. 2017 May;16(1):74. https://doi.org/10.1186/s12934-017-0683-z KangMK ZhouYJ BuijsNA NielsenJ Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae Microb Cell Fact 2017 May 16 1 74 https://doi.org/10.1186/s12934-017-0683-z Search in Google Scholar

Khattar JI, Singh DP, Jindal N, Kaur N, Singh Y, Rahi P, Gulati A. Isolation and characterization of exopolysaccharides produced by the cyanobacterium Limnothrix redekei PUPCCC 116. Appl Biochem Biotechnol. 2010 Nov;162(5):1327–1338. https://doi.org/10.1007/s12010-010-8922-3 KhattarJI SinghDP JindalN KaurN SinghY RahiP GulatiA Isolation and characterization of exopolysaccharides produced by the cyanobacterium Limnothrix redekei PUPCCC 116 Appl Biochem Biotechnol 2010 Nov 162 5 1327 1338 https://doi.org/10.1007/s12010-010-8922-3 Search in Google Scholar

Kittel H, Horský J, Šimáček P. Properties of selected alternative petroleum fractions and sustainable aviation fuels. Processes 2023; 11(3):935. https://doi.org/10.3390/pr11030935 KittelH HorskýJ ŠimáčekP Properties of selected alternative petroleum fractions and sustainable aviation fuels Processes 2023 11 3 935 https://doi.org/10.3390/pr11030935 Search in Google Scholar

Kudo H, Hayashi Y, Arai M. Identification of non-conserved residues essential for improving the hydrocarbon-producing activity of cyanobacterial aldehyde-deformylating oxygenase. Biotechnol Biofuels. 2019 Apr;12:89. https://doi.org/10.1186/s13068-019-1409-8 KudoH HayashiY AraiM Identification of non-conserved residues essential for improving the hydrocarbon-producing activity of cyanobacterial aldehyde-deformylating oxygenase Biotechnol Biofuels 2019 Apr 12 89 https://doi.org/10.1186/s13068-019-1409-8 Search in Google Scholar

Lin Q, Lin J. Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresour Technol. 2011 Jan;102(2):1615–1621. https://doi.org/10.1016/j.biortech.2010.09.008 LinQ LinJ Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga Bioresour Technol 2011 Jan 102 2 1615 1621 https://doi.org/10.1016/j.biortech.2010.09.008 Search in Google Scholar

Ma F, Hanna MA. Biodiesel production: A review. Biores Technol. 1999 Oct;70(1):1–15. https://doi.org/10.1016/s0960-8524(99)00025-5 MaF HannaMA Biodiesel production: A review Biores Technol 1999 Oct 70 1 1 15 https://doi.org/10.1016/s0960-8524(99)00025-5 Search in Google Scholar

Marsh EN, Waugh MW. Aldehyde decarbonylases: Enigmatic enzymes of hydrocarbon biosynthesis. ACS Catal. 2013 Sep;3(11): 2515–2521. https://doi.org/10.1021/cs400637t MarshEN WaughMW Aldehyde decarbonylases: Enigmatic enzymes of hydrocarbon biosynthesis ACS Catal 2013 Sep 3 11 2515 2521 https://doi.org/10.1021/cs400637t Search in Google Scholar

Mathur S, Waswani H, Singh D, Ranjan R. Alternative fuels for agriculture sustainability: Carbon footprint and economic feasibility. AgriEngineering. 2022 Oct;4(4):993–1015. https://doi.org/10.3390/agriengineering4040063 MathurS WaswaniH SinghD RanjanR Alternative fuels for agriculture sustainability: Carbon footprint and economic feasibility AgriEngineering 2022 Oct 4 4 993 1015 https://doi.org/10.3390/agriengineering4040063 Search in Google Scholar

McLafferty FW, Stauffer DB. The Wiley/NBS registry of mass spectral data. New York (USA): Wiley; 1989. McLaffertyFW StaufferDB The Wiley/NBS registry of mass spectral data New York (USA) Wiley 1989 Search in Google Scholar

Meffert ME. Limnothrix Meffert nov. gen. the unsheathed planktic cyanophycean filaments with polar and central gas vacuoles. Algol Stud. 1988;50–53:269–276. MeffertME Limnothrix Meffert nov. gen. the unsheathed planktic cyanophycean filaments with polar and central gas vacuoles Algol Stud 1988 50–53 269 276 Search in Google Scholar

Moulin S, Légeret B, Blangy S, Sorigué D, Burlacot A, Auroy P, Li-Beisson Y, Peltier G, Beisson F. Continuous photoproduction of hydrocarbon drop-in fuel by microbial cell factories. Sci Rep. 2019 Sep;9(1):13713. https://doi.org/10.1038/s41598-019-50261-6 MoulinS LégeretB BlangyS SoriguéD BurlacotA AuroyP Li-BeissonY PeltierG BeissonF Continuous photoproduction of hydrocarbon drop-in fuel by microbial cell factories Sci Rep 2019 Sep 9 1 13713 https://doi.org/10.1038/s41598-019-50261-6 Search in Google Scholar

Neupane D. Biofuels from renewable sources, a potential option for biodiesel production. Bioengineering. 2023;10(1):29. https://doi.org/10.3390/bioengineering10010029 NeupaneD Biofuels from renewable sources, a potential option for biodiesel production Bioengineering 2023 10 1 29 https://doi.org/10.3390/bioengineering10010029 Search in Google Scholar

Parikh A, Madamwar D. Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour Technol. 2006 Oct; 97(15):1822–1827. https://doi.org/10.1016/j.biortech.2005.09.008 ParikhA MadamwarD Partial characterization of extracellular polysaccharides from cyanobacteria Bioresour Technol 2006 Oct 97 15 1822 1827 https://doi.org/10.1016/j.biortech.2005.09.008 Search in Google Scholar

Park AK, Kim IS, Jeon BW, Roh SJ, Ryu MY, Baek HR, Jo SW, Kim YS, Park H, Lee JH, et al. Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011. Biochem Biophys Res Commun. 2016 Aug; 477(3):395–400. https://doi.org/10.1016/j.bbrc.2016.06.090 ParkAK KimIS JeonBW RohSJ RyuMY BaekHR JoSW KimYS ParkH LeeJH Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011 Biochem Biophys Res Commun 2016 Aug 477 3 395 400 https://doi.org/10.1016/j.bbrc.2016.06.090 Search in Google Scholar

Rahmana Z, Sung BH, Yi JY, Bui le M, Lee JH, Kim SC. Enhanced production of n-alkanes in Escherichia coli by spatial organization of biosynthetic pathway enzymes. J Biotechnol. 2014 Dec;192:187–191. https://doi.org/10.1016/j.jbiotec.2014.10.014 RahmanaZ SungBH YiJY Bui leM LeeJH KimSC Enhanced production of n-alkanes in Escherichia coli by spatial organization of biosynthetic pathway enzymes J Biotechnol 2014 Dec 192 187 191 https://doi.org/10.1016/j.jbiotec.2014.10.014 Search in Google Scholar

Regalbuto JR. Engineering. Cellulosic biofuels – got gasoline? Science. 2009 Aug;325(5942):822–4. https://doi.org/10.1126/science.1174581 RegalbutoJR Engineering. Cellulosic biofuels – got gasoline? Science 2009 Aug 325 5942 822 4 https://doi.org/10.1126/science.1174581 Search in Google Scholar

Samuels L, Kunst L, Jetter R. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol. 2008;59: 683–707. https://doi.org/10.1146/annurev.arplant.59.103006.093219 SamuelsL KunstL JetterR Sealing plant surfaces: cuticular wax formation by epidermal cells Annu Rev Plant Biol 2008 59 683 707 https://doi.org/10.1146/annurev.arplant.59.103006.093219 Search in Google Scholar

Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB. Microbial biosynthesis of alkanes. Science. 2010 Jul;329(5991):559–562. https://doi.org/10.1126/science.1187936 SchirmerA RudeMA LiX PopovaE del CardayreSB Microbial biosynthesis of alkanes Science 2010 Jul 329 5991 559 562 https://doi.org/10.1126/science.1187936 Search in Google Scholar

Shimura Y, Hirose Y, Misawa N, Osana Y, Katoh H, Yamaguchi H, Kawachi M. Comparison of the terrestrial cyanobacterium Leptolyngbya sp. NIES-2104 and the freshwater Leptolyngbya boryana PCC 6306 genomes. DNA Res. 2015 Dec;22(6):403–412. https://doi.org/10.1093/dnares/dsv022 ShimuraY HiroseY MisawaN OsanaY KatohH YamaguchiH KawachiM Comparison of the terrestrial cyanobacterium Leptolyngbya sp. NIES-2104 and the freshwater Leptolyngbya boryana PCC 6306 genomes DNA Res 2015 Dec 22 6 403 412 https://doi.org/10.1093/dnares/dsv022 Search in Google Scholar

Spain O, Funk C. Detailed characterization of the cell wall structure and composition of nordic green microalgae. J Agric Food Chem. 2022 Aug;70(31):9711–9721. https://doi.org/10.1021/acs.jafc.2c02783 SpainO FunkC Detailed characterization of the cell wall structure and composition of nordic green microalgae J Agric Food Chem 2022 Aug 70 31 9711 9721 https://doi.org/10.1021/acs.jafc.2c02783 Search in Google Scholar

Tajima N, Kanesaki Y, Sato S, Yoshikawa H, Maruyama F, Kurokawa K, Ohta H, Nishizawa T, Asayama M, Sato N. Complete genome sequence of the nonheterocystous cyanobacterium Pseudanabaena sp. ABRG5-3. Genome Announc. 2018 Feb;6(6): e01608–17. https://doi.org/10.1128/genomeA.01608-17 TajimaN KanesakiY SatoS YoshikawaH MaruyamaF KurokawaK OhtaH NishizawaT AsayamaM SatoN Complete genome sequence of the nonheterocystous cyanobacterium Pseudanabaena sp. ABRG5-3 Genome Announc 2018 Feb 6 6 e01608 17 https://doi.org/10.1128/genomeA.01608-17 Search in Google Scholar

Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA. 2004 Jul;101(30):11030–11035. https://doi.org/10.1073/pnas.0404206101 TamuraK NeiM KumarS Prospects for inferring very large phylogenies by using the neighbor-joining method Proc Natl Acad Sci USA 2004 Jul 101 30 11030 11035 https://doi.org/10.1073/pnas.0404206101 Search in Google Scholar

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011 Oct;28(10):2731–2739. https://doi.org/10.1093/molbev/msr121 TamuraK PetersonD PetersonN StecherG NeiM KumarS MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods Mol Biol Evol 2011 Oct 28 10 2731 2739 https://doi.org/10.1093/molbev/msr121 Search in Google Scholar

Tan BF, Te SH, Gin KY, Thompson JR. Draft genome sequence of a tropical freshwater cyanobacterium, Limnothrix sp. Strain P13C2. Genome Announc. 2016 Oct;4(5):e01117–16. https://doi.org/10.1128/genomeA.01117-16 TanBF TeSH GinKY ThompsonJR Draft genome sequence of a tropical freshwater cyanobacterium, Limnothrix sp. Strain P13C2 Genome Announc 2016 Oct 4 5 e01117 16 https://doi.org/10.1128/genomeA.01117-16 Search in Google Scholar

Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ. Insect pheromones – an overview of biosynthesis and endocrine regulation. Insect Biochem Mol Biol. 1999 Jun;29(6):481–514. https://doi.org/10.1016/s0965-1748(99)00016-8 TillmanJA SeyboldSJ JurenkaRA BlomquistGJ Insect pheromones – an overview of biosynthesis and endocrine regulation Insect Biochem Mol Biol 1999 Jun 29 6 481 514 https://doi.org/10.1016/s0965-1748(99)00016-8 Search in Google Scholar

Trabelsi L, Ben Ouada H, Bacha H, Ghoul M. Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis. J Appl Phycol. 2009;21:405–412. https://doi.org/10.1007/s10811-008-9383-8 TrabelsiL Ben OuadaH BachaH GhoulM Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis J Appl Phycol 2009 21 405 412 https://doi.org/10.1007/s10811-008-9383-8 Search in Google Scholar

Vélez C, Ortiz de Zárate JM, Khayet M. Thermal properties of n-pentadecane, n-heptadecane and n-nonadecane in the solid/liquid phase change region. Int J Therm Sci. 2015;94:139–146. https://doi.org/10.1016/j.ijthermalsci.2015.03.001 VélezC Ortiz de ZárateJM KhayetM Thermal properties of n-pentadecane, n-heptadecane and n-nonadecane in the solid/liquid phase change region Int J Therm Sci 2015 94 139 146 https://doi.org/10.1016/j.ijthermalsci.2015.03.001 Search in Google Scholar

Wingender J, Neu TR, Flemming HC. What are bacterial extracellular polymeric substances? In: Wingender J, Neu TR, Flemming HC, editors. Microbial extracellular polymeric substances. Berlin, Heidelberg (Germany): Springer; 1999. p. 1–19. https://doi.org/10.1007/978-3-642-60147-7_1 WingenderJ NeuTR FlemmingHC What are bacterial extracellular polymeric substances? In: WingenderJ NeuTR FlemmingHC editors. Microbial extracellular polymeric substances Berlin, Heidelberg (Germany) Springer 1999 1 19 https://doi.org/10.1007/978-3-642-60147-7_1 Search in Google Scholar

Yeo H, Youn K, Kim M, Yun EY, Hwang JS, Jeong WS, Jun M. Fatty acid composition and volatile constituents of Protaetia brevitarsis larvae. Prev Nutr Food Sci. 2013 Jun;18(2):150–156. https://doi.org/10.3746/pnf.2013.18.2.150 YeoH YounK KimM YunEY HwangJS JeongWS JunM Fatty acid composition and volatile constituents of Protaetia brevitarsis larvae Prev Nutr Food Sci 2013 Jun 18 2 150 156 https://doi.org/10.3746/pnf.2013.18.2.150 Search in Google Scholar

Zhang J, Lu X, Li JJ. Conversion of fatty aldehydes into alk (a/e) nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system. Biotechnol Biofuels. 2013 Jun;6(1):86. https://doi.org/10.1186/1754-6834-6-86 ZhangJ LuX LiJJ Conversion of fatty aldehydes into alk (a/e) nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system Biotechnol Biofuels 2013 Jun 6 1 86 https://doi.org/10.1186/1754-6834-6-86 Search in Google Scholar

Zou X, Sun M, Guo X. Quantitative response of cell growth and polysaccharide biosynthesis by the medicinal mushroom Phellinus linteus to NaCl in the medium. World J Microbiol Biotechnol. 2006;22:1129–1133. https://doi.org/10.1007/s11274-006-9153-1 ZouX SunM GuoX Quantitative response of cell growth and polysaccharide biosynthesis by the medicinal mushroom Phellinus linteus to NaCl in the medium World J Microbiol Biotechnol 2006 22 1129 1133 https://doi.org/10.1007/s11274-006-9153-1 Search in Google Scholar

eISSN:
2544-4646
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Microbiology and Virology