INFORMAZIONI SU QUESTO ARTICOLO

Cita

Abd-Alla MH, Issa AA, Ohyama T. Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. In: Ohyama T, editor. Advances in biology and ecology of nitrogen fixation. Rejeka (Croatia): IntechOpen; 2014. https://doi.org/10.5772/56997Abd-AllaMHIssaAAOhyamaT. Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. In: OhyamaT, editor. Advances in biology and ecology of nitrogen fixation. Rejeka (Croatia): IntechOpen; 2014. https://doi.org/10.5772/5699710.5772/56997Search in Google Scholar

Amooaghaie R. Role of polyamines in the tolerance of soybean to water deficit stress. World Acad Sci Eng Technol. 2011;56:498–502.AmooaghaieR. Role of polyamines in the tolerance of soybean to water deficit stress. World Acad Sci Eng Technol. 2011;56:498502.Search in Google Scholar

Atieno M, Lesueur D. Opportunities for improved legume inoculants: enhanced stress tolerance of rhizobia and benefits to agroecosystems. Symbiosis. 2019 Mar;77(3):191–205. https://doi.org/10.1007/s13199-018-0585-9AtienoMLesueurD. Opportunities for improved legume inoculants: enhanced stress tolerance of rhizobia and benefits to agroecosystems. Symbiosis. 2019Mar;77(3):191205. https://doi.org/10.1007/s13199-018-0585-910.1007/s13199-018-0585-9Search in Google Scholar

Blanco AR, Sicardi M, Frioni L. Competition for nodule occupancy between introduced and native strains of Rhizobium leguminosarum biovar trifolii. Biol Fertil Soils. 2010 Apr;46(4):419–425. https://doi.org/10.1007/s00374-010-0439-yBlancoARSicardiMFrioniL. Competition for nodule occupancy between introduced and native strains of Rhizobium leguminosarum biovar trifolii. Biol Fertil Soils. 2010Apr;46(4):419425. https://doi.org/10.1007/s00374-010-0439-y10.1007/s00374-010-0439-ySearch in Google Scholar

Botha WJ, Jaftha JB, Bloem JF, Habig JH, Law IJ. Effect of soil bradyrhizobia on the success of soybean inoculant strain CB 1809. Microbiol Res. 2004 Sep;159(3):219–231. https://doi.org/10.1016/j.micres.2004.04.004BothaWJJafthaJBBloemJFHabigJHLawIJ. Effect of soil bradyrhizobia on the success of soybean inoculant strain CB 1809. Microbiol Res. 2004Sep;159(3):219231. https://doi.org/10.1016/j.micres.2004.04.00410.1016/j.micres.2004.04.00415462522Search in Google Scholar

Boumahdi M, Mary P, Hornez JP. Influence of growth phases and desiccation on the degrees of unsaturation of fatty acids and the survival rates of rhizobia. J Appl Microbiol. 1999 Oct;87(4):611–619. https://doi.org/10.1046/j.1365-2672.1999.00860.xBoumahdiMMaryPHornezJP. Influence of growth phases and desiccation on the degrees of unsaturation of fatty acids and the survival rates of rhizobia. J Appl Microbiol. 1999Oct;87(4):611619. https://doi.org/10.1046/j.1365-2672.1999.00860.x10.1046/j.1365-2672.1999.00860.x10583690Search in Google Scholar

Castellane TCL, Campanharo JC, Colnago LA, Coutinho ID, Lopes ÉM, Lemos MVF, de Macedo Lemos EG. Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate. Int J Biol Macromol. 2017 Mar; 96:361–369. https://doi.org/10.1016/j.ijbiomac.2016.11.123CastellaneTCLCampanharoJCColnagoLACoutinhoIDLopesÉMLemosMVFde Macedo LemosEG. Characterization of new exopolysaccharide production by Rhizobium tropici during growth on hydrocarbon substrate. Int J Biol Macromol. 2017Mar; 96:361369. https://doi.org/10.1016/j.ijbiomac.2016.11.12310.1016/j.ijbiomac.2016.11.12328011103Search in Google Scholar

Deaker R, Roughley RJ, Kennedy IR. Desiccation tolerance of rhizobia when protected by synthetic polymers. Soil Biol Biochem. 2007 Feb;39(2):573–580. https://doi.org/10.1016/j.soilbio.2006.09.005DeakerRRoughleyRJKennedyIR. Desiccation tolerance of rhizobia when protected by synthetic polymers. Soil Biol Biochem. 2007Feb;39(2):573580. https://doi.org/10.1016/j.soilbio.2006.09.00510.1016/j.soilbio.2006.09.005Search in Google Scholar

Dimkpa C, Weinand T, Asch F. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 2009 Sep; 32(12):1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.xDimkpaCWeinandTAschF. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 2009Sep; 32(12):16821694. https://doi.org/10.1111/j.1365-3040.2009.02028.x10.1111/j.1365-3040.2009.02028.x19671096Search in Google Scholar

Donati AJ, Lee HI, Leveau JH, Chang WS. Effects of indole-3-acetic acid on the transcriptional activities and stress tolerance of Bradyrhizobium japonicum. PloS one. 2013 Oct;8(10):e76559. https://doi.org/10.1371/journal.pone.0076559DonatiAJLeeHILeveauJHChangWS. Effects of indole-3-acetic acid on the transcriptional activities and stress tolerance of Bradyrhizobium japonicum. PloS one. 2013Oct;8(10):e76559. https://doi.org/10.1371/journal.pone.007655910.1371/journal.pone.0076559378872824098533Search in Google Scholar

Donot F, Fontana A, Baccou J, Schorr-Galindo S. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym. 2012 Jan;87(2):951–962. https://doi.org/10.1016/j.carbpol.2011.08.083DonotFFontanaABaccouJSchorr-GalindoS. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym. 2012Jan;87(2):951962. https://doi.org/10.1016/j.carbpol.2011.08.08310.1016/j.carbpol.2011.08.083Search in Google Scholar

Efiuvwevwere B, Gorris L, Smid E, Kets E. Mannitol-enhanced survival of Lactococcus lactis subjected to drying. Appl Microbiol Biotechnol. 1999 Jan;51(1):100–104. https://doi.org/10.1007/s002530051369EfiuvwevwereBGorrisLSmidEKetsE. Mannitol-enhanced survival of Lactococcus lactis subjected to drying. Appl Microbiol Biotechnol. 1999Jan;51(1):100104. https://doi.org/10.1007/s00253005136910.1007/s002530051369Search in Google Scholar

Empadinhas N, da Costa MS. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol. 2008 Sep;11(3):151–161.EmpadinhasNda CostaMS. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol. 2008Sep;11(3):151161.Search in Google Scholar

Fernandez-Aunión C, Hamouda T, Iglesias-Guerra F, Argandoña M, Reina-Bueno M, Nieto J, Aouani ME, Vargas C. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol. 2010 Jul;10(1):192. https://doi.org/10.1186/1471-2180-10-192Fernandez-AuniónCHamoudaTIglesias-GuerraFArgandoñaMReina-BuenoMNietoJAouaniMEVargasC. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol. 2010Jul;10(1):192. https://doi.org/10.1186/1471-2180-10-19210.1186/1471-2180-10-192291858920633304Search in Google Scholar

Gamalero E, Glick BR. Bacterial modulation of plant ethylene levels. Plant Physiol. 2015 Sep;169(1):13–22. https://doi.org/10.1104/pp.15.00284GamaleroEGlickBR. Bacterial modulation of plant ethylene levels. Plant Physiol. 2015Sep;169(1):1322. https://doi.org/10.1104/pp.15.0028410.1104/pp.15.00284457737725897004Search in Google Scholar

Ghalamboran M, Ramsden JJ. Viability of Bradyrhizobium japanicum on soybean seeds enhanced by magnetite nanoparticles during desiccation. World Acad Sci Eng Technol. 2010 Mar;63:198–203. https://doi.org/10.5281/zenodo.1073008GhalamboranMRamsdenJJ. Viability of Bradyrhizobium japanicum on soybean seeds enhanced by magnetite nanoparticles during desiccation. World Acad Sci Eng Technol. 2010Mar;63:198203. https://doi.org/10.5281/zenodo.1073008Search in Google Scholar

Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. Biotech. 2015 Aug;5(4):355–377. https://doi.org/10.1007/s13205-014-0241-xGopalakrishnanSSathyaAVijayabharathiRVarshneyRKGowdaCLKrishnamurthyL. Plant growth promoting rhizobia: challenges and opportunities. Biotech. 2015Aug;5(4):355377. https://doi.org/10.1007/s13205-014-0241-x10.1007/s13205-014-0241-x452273328324544Search in Google Scholar

Gouffi K, Pica N, Pichereau V, Blanco C. Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. Appl Environ Microbiol. 1999 Apr;65(4):1491–1500. https://doi.org/10.1128/AEM.65.4.1491-1500.1999GouffiKPicaNPichereauVBlancoC. Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. Appl Environ Microbiol. 1999Apr;65(4):14911500. https://doi.org/10.1128/AEM.65.4.1491-1500.199910.1128/AEM.65.4.1491-1500.19999121210103242Search in Google Scholar

Gupta S, Pandey S. Unravelling the biochemistry and genetics of ACC deaminase – An enzyme alleviating the biotic and abiotic stress in plants. Plant gene. 2019 Jun;18:100175. https://doi.org/10.1016/j.plgene.2019.100175GuptaSPandeyS. Unravelling the biochemistry and genetics of ACC deaminase – An enzyme alleviating the biotic and abiotic stress in plants. Plant gene. 2019Jun;18:100175. https://doi.org/10.1016/j.plgene.2019.10017510.1016/j.plgene.2019.100175Search in Google Scholar

Idris HA, Labuschagne N, Korsten L. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol Control. 2007 Jan;40(1):97–106. https://doi.org/10.1016/j.biocontrol.2006.07.017IdrisHALabuschagneNKorstenL. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol Control. 2007Jan;40(1):97106. https://doi.org/10.1016/j.biocontrol.2006.07.01710.1016/j.biocontrol.2006.07.017Search in Google Scholar

Indrasumunar A, Dart PJ, Menzies NW. Symbiotic effectiveness of Bradyrhizobium japonicum in acid soils can be predicted from their sensitivity to acid soil stress factors in acidic agar media. Soil Biol Biochem. 2011 Oct;43(10):2046–2052. https://doi.org/10.1016/j.soilbio.2011.05.022IndrasumunarADartPJMenziesNW. Symbiotic effectiveness of Bradyrhizobium japonicum in acid soils can be predicted from their sensitivity to acid soil stress factors in acidic agar media. Soil Biol Biochem. 2011Oct;43(10):20462052. https://doi.org/10.1016/j.soilbio.2011.05.02210.1016/j.soilbio.2011.05.022Search in Google Scholar

Iturralde ET, Covelli JM, Alvarez F, Pérez-Giménez J, Arrese-Igor C, Lodeiro AR. Soybean-nodulating strains with low intrinsic competitiveness for nodulation, good symbiotic performance, and stress-tolerance isolated from soybean-cropped soils in Argentina. Front Microbiol. 2019 May;10:1061. https://doi.org/10.3389/fmicb.2019.01061IturraldeETCovelliJMAlvarezFPérez-GiménezJArrese-IgorCLodeiroAR. Soybean-nodulating strains with low intrinsic competitiveness for nodulation, good symbiotic performance, and stress-tolerance isolated from soybean-cropped soils in Argentina. Front Microbiol. 2019May;10:1061. https://doi.org/10.3389/fmicb.2019.0106110.3389/fmicb.2019.01061652759731139173Search in Google Scholar

Jalloh AA. Potential of native rhizobia isolates to improve production of legume crops in small holder farms. Biosci Res. 2020 Aug; 8(2):681–692.JallohAA. Potential of native rhizobia isolates to improve production of legume crops in small holder farms. Biosci Res. 2020Aug; 8(2):681692.Search in Google Scholar

Kajić S, Komes A, Rajnović I, Sikora S. Selection of stress tolerant indigenous rhizobia nodulating alfalfa (Medicago sativa L.). Agric Conspec Sci. 2019 Sep;84(4):365–370.KajićSKomesARajnovićISikoraS. Selection of stress tolerant indigenous rhizobia nodulating alfalfa (Medicago sativa L.). Agric Conspec Sci. 2019Sep;84(4):365370.Search in Google Scholar

Kilimann KV, Doster W, Vogel RF, Hartmann C, Gänzle MG. Protection by sucrose against heat-induced lethal and sublethal injury of Lactococcus lactis: An FT-IR study. Biochim Biophys Acta Proteins Proteom. 2006 Jul;1764(7):1188–1197. https://doi.org/10.1016/j.bbapap.2006.04.016KilimannKVDosterWVogelRFHartmannCGänzleMG. Protection by sucrose against heat-induced lethal and sublethal injury of Lactococcus lactis: An FT-IR study. Biochim Biophys Acta Proteins Proteom. 2006Jul;1764(7):11881197. https://doi.org/10.1016/j.bbapap.2006.04.01610.1016/j.bbapap.2006.04.01616781903Search in Google Scholar

Krause A, Doerfel A, Gottfert M. Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant Microbe Interact. 2002 Dec;15(12):1228–1235. https://doi.org/10.1094/MPMI.2002.15.12.1228KrauseADoerfelAGottfertM. Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant Microbe Interact. 2002Dec;15(12):12281235. https://doi.org/10.1094/MPMI.2002.15.12.122810.1094/MPMI.2002.15.12.122812481995Search in Google Scholar

Lai MC, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol. 1991 Sep;173(17):5352–5358. https://doi.org/10.1128/jb.173.17.5352-5358.1991LaiMCSowersKRRobertsonDERobertsMFGunsalusRP. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol. 1991Sep;173(17):53525358. https://doi.org/10.1128/jb.173.17.5352-5358.199110.1128/jb.173.17.5352-5358.19912082451909318Search in Google Scholar

Le Rudulier D. Osmoregulation in rhizobia: The key role of compatible solutes. Grain Legume. 2005; 42:18–19.Le RudulierD. Osmoregulation in rhizobia: The key role of compatible solutes. Grain Legume. 2005; 42:1819.Search in Google Scholar

Lee JW, Choi S, Kim JM, Lee SY. Mannheimia succiniciproducens phosphotransferase system for sucrose utilization. Appl Environ Microbiol. 2010 Mar;76(5):1699–1703. https://doi.org/10.1128/AEM.02468-09LeeJWChoiSKimJMLeeSY. Mannheimia succiniciproducens phosphotransferase system for sucrose utilization. Appl Environ Microbiol. 2010Mar;76(5):16991703. https://doi.org/10.1128/AEM.02468-0910.1128/AEM.02468-09283236320081002Search in Google Scholar

Manassila M, Nuntagij A, Tittabutr P, Boonkerd N, Teaumroong N. Growth, symbiotic, and proteomics studies of soybean Bradyrhizobium in response to adaptive acid tolerance. Afr J Biotechnol. 2012 Oct;11(83):14899–14910. https://doi.org/10.4314/AJB.V11I83ManassilaMNuntagijATittabutrPBoonkerdNTeaumroongN. Growth, symbiotic, and proteomics studies of soybean Bradyrhizobium in response to adaptive acid tolerance. Afr J Biotechnol. 2012Oct;11(83):1489914910. https://doi.org/10.4314/AJB.V11I83Search in Google Scholar

Marsh LE, Baptiste R, Marsh DB, Trinklein D, Kremer RJ. Temperature effects on Bradyrhizobium spp. growth and symbiotic effectiveness with pigeon pea and cowpea. J Plant Nutr. 2006 Feb;29(2):331–346. https://doi.org/10.1080/01904160500476921MarshLEBaptisteRMarshDBTrinkleinDKremerRJ. Temperature effects on Bradyrhizobium spp. growth and symbiotic effectiveness with pigeon pea and cowpea. J Plant Nutr. 2006Feb;29(2):331346. https://doi.org/10.1080/0190416050047692110.1080/01904160500476921Search in Google Scholar

Maryani Y, Dewi W, Yunus A. Study on rhizobium interaction with osmoprotectant rhizobacteria for improving mung bean yield. Conf Ser Earth Environ Sci. 2018 Mar;129(1):012011. https://doi.org/10.1088/1755-1315/129/1/012011MaryaniYDewiWYunusA. Study on rhizobium interaction with osmoprotectant rhizobacteria for improving mung bean yield. Conf Ser Earth Environ Sci. 2018Mar;129(1):012011. https://doi.org/10.1088/1755-1315/129/1/01201110.1088/1755-1315/129/1/012011Search in Google Scholar

Mayak S, Tirosh T, Glick BR. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 2004 Feb;166:525–530. https://doi.org/10.1016/j.plantsci.2003.10.025MayakSTiroshTGlickBR. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 2004Feb;166:525530. https://doi.org/10.1016/j.plantsci.2003.10.02510.1016/j.plantsci.2003.10.025Search in Google Scholar

Mcintyre HJ, Hore TA, Miller SH, Dufour JP, Ronson CW. Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl Environ Microbiol. 2007 Jun; 73(12):3984–3992. https://doi.org/10.1128/AEM.00412-07McintyreHJHoreTAMillerSHDufourJPRonsonCW. Trehalose biosynthesis in Rhizobium leguminosarum bv. trifolii and its role in desiccation tolerance. Appl Environ Microbiol. 2007Jun; 73(12):39843992. https://doi.org/10.1128/AEM.00412-0710.1128/AEM.00412-07193273717449695Search in Google Scholar

Michel BE. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 1983 May;72(1):66–70. https://doi.org/10.1104/pp.72.1.66MichelBE. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 1983May;72(1):6670. https://doi.org/10.1104/pp.72.1.6610.1104/pp.72.1.66106617016662983Search in Google Scholar

Mubarik NR, Habibah H, Wahyudi AT. Greenhouse experiments of symbiotic effectiveness of acid-aluminium tolerance Bradyrhizobium japonicum strains on soybean plant. In: Nejadkoorki F, editor. International Conference on Applied Life Sciences. Rejeka (Croatia): Intech Open; 2012. p. 337–342. https://doi.org/10.5772/intechopen.84101MubarikNRHabibahHWahyudiAT. Greenhouse experiments of symbiotic effectiveness of acid-aluminium tolerance Bradyrhizobium japonicum strains on soybean plant. In: NejadkoorkiF, editor. International Conference on Applied Life Sciences. Rejeka (Croatia): Intech Open; 2012. p. 337342. https://doi.org/10.5772/intechopen.84101Search in Google Scholar

Nagananda G, Das A, Bhattacharya S, Kalpana T. In vitro studies on the effects of biofertilizers (Azotobacter and Rhizobium) on seed germination and development of Trigonella foenum-graecum L. using a novel glass marble containing liquid medium. Int J Botany. 2010 Sep;6(4):394–403. https://doi.org/10.3923/ijb.2010.394.403NaganandaGDasABhattacharyaSKalpanaT. In vitro studies on the effects of biofertilizers (Azotobacter and Rhizobium) on seed germination and development of Trigonella foenum-graecum L. using a novel glass marble containing liquid medium. Int J Botany. 2010Sep;6(4):394403. https://doi.org/10.3923/ijb.2010.394.40310.3923/ijb.2010.394.403Search in Google Scholar

Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999 Jan;170(1):265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.xNautiyalCS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999Jan;170(1):265270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x10.1111/j.1574-6968.1999.tb13383.x9919677Search in Google Scholar

Ntambo M, Chilinda IS, Taruvinga A, Hafeez S, Anwar T, Sharif R, Kies L. The effect of rhizobium inoculation with nitrogen fertilizer on growth and yield of soybeans (Glycine max L.). Int J Biosci. 2017 Mar;10(3):163–172. https://doi.org/10.12692/ijb/10.3.163-172NtamboMChilindaISTaruvingaAHafeezSAnwarTSharifRKiesL. The effect of rhizobium inoculation with nitrogen fertilizer on growth and yield of soybeans (Glycine max L.). Int J Biosci. 2017Mar;10(3):163172. https://doi.org/10.12692/ijb/10.3.163-17210.12692/ijb/10.3.163-172Search in Google Scholar

Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria. World J Microb Biot 2017 Oct; 33(11):1–16. https://doi.org/10.1007/s11274-017-2364-9OlanrewajuOSGlickBRBabalolaOO. Mechanisms of action of plant growth promoting bacteria. World J Microb Biot2017Oct; 33(11):116. https://doi.org/10.1007/s11274-017-2364-910.1007/s11274-017-2364-9568627028986676Search in Google Scholar

Payakapong W, Tittabutr P, Teaumroong N, Boonkerd N. Soybean cultivars affect nodulation competition of Bradyrhizobium japonicum strains. World J Microbiol Biotechnol. 2004 Apr;20(3):311–315. https://doi.org/10.1023/B:WIBI.0000023838.06663.c5PayakapongWTittabutrPTeaumroongNBoonkerdN. Soybean cultivars affect nodulation competition of Bradyrhizobium japonicum strains. World J Microbiol Biotechnol. 2004Apr;20(3):311315. https://doi.org/10.1023/B:WIBI.0000023838.06663.c510.1023/B:WIBI.0000023838.06663.c5Search in Google Scholar

Razika G, Amira B, Yacine B, Ammar B. Influence of carbon source on the production of exopolysacharides by Rhizobium sullae and on the nodulation of Hedysarum coronarium L. Legume. Afr J Microbiol Res. 2012 Jan;6(30):5940–5946. https://doi.org/10.5897/AJMR12.393RazikaGAmiraBYacineBAmmarB. Influence of carbon source on the production of exopolysacharides by Rhizobium sullae and on the nodulation of Hedysarum coronarium L. Legume. Afr J Microbiol Res. 2012Jan;6(30):59405946. https://doi.org/10.5897/AJMR12.39310.5897/AJMR12.393Search in Google Scholar

Reid SJ, Abratt VR. Sucrose utilisation in bacteria: genetic organisation and regulation. Appl Microbiol Biotechnol. 2005 Jan;67(3):312–321. https://doi.org/10.1007/s00253-004-1885-yReidSJAbrattVR. Sucrose utilisation in bacteria: genetic organisation and regulation. Appl Microbiol Biotechnol. 2005Jan;67(3):312321. https://doi.org/10.1007/s00253-004-1885-y10.1007/s00253-004-1885-y15660210Search in Google Scholar

Sangproo M, Polyiam P, Jantama SS, Kanchanatawee S, Jantama K. Metabolic engineering of Klebsiella oxytoca M5a1 to produce optically pure d-lactate in mineral salts medium. Bioresour Technol. 2012 Sep;119(0):191–198. https://doi.org/10.1016/j.biortech.2012.05.114SangprooMPolyiamPJantamaSSKanchanataweeSJantamaK. Metabolic engineering of Klebsiella oxytoca M5a1 to produce optically pure d-lactate in mineral salts medium. Bioresour Technol. 2012Sep;119(0):191198. https://doi.org/10.1016/j.biortech.2012.05.11410.1016/j.biortech.2012.05.11422728200Search in Google Scholar

Sarwar M, Arshad M, Martens DA, Frankenberger WT. Tryptophan-dependent biosynthesis of auxins in soil. Plant and Soil, 1992 Jan;147(2):207–215. https://doi.org/10.1007/BF00029072SarwarMArshadMMartensDAFrankenbergerWT. Tryptophan-dependent biosynthesis of auxins in soil. Plant and Soil, 1992Jan;147(2):207215. https://doi.org/10.1007/BF0002907210.1007/BF00029072Search in Google Scholar

Saxena S C, Kaur H, Verma P, Petla BP, Andugula VR, Majee M. Osmoprotectants: potential for crop improvement under adverse conditions. In: Tuteja N, Singh Gill S, editors. Plant acclimation to environmental stress. New York (USA): Springer; 2013. p. 197–232. https://doi.org/10.1007/978-1-4614-5001-6_9Saxena SCKaurHVermaPPetlaBPAndugulaVRMajeeM. Osmoprotectants: potential for crop improvement under adverse conditions. In: TutejaNSingh GillS, editors. Plant acclimation to environmental stress. New York (USA): Springer; 2013. p. 197232. https://doi.org/10.1007/978-1-4614-5001-6_910.1007/978-1-4614-5001-6_9Search in Google Scholar

Schneider M, De Bruijn F. Rep-PCR mediated genomic fingerprinting of rhizobia and computer-assisted phylogenetic pattern analysis. World J Microbiol Biotechnol. 1996 Mar;12(2):163–174. https://doi.org/10.1007/BF00364681SchneiderMDe BruijnF. Rep-PCR mediated genomic fingerprinting of rhizobia and computer-assisted phylogenetic pattern analysis. World J Microbiol Biotechnol. 1996Mar;12(2):163174. https://doi.org/10.1007/BF0036468110.1007/BF0036468124415164Search in Google Scholar

Shamseldin A, Werner D. Selection of competitive strains of Rhizobium nodulating Phaseolus vulgaris and adapted to environmental conditions in Egypt, using the gus-reporter gene technique. World J Microbiol Biotechnol. 2004 Jun;20(4):377–382. https://doi.org/10.1023/B:WIBI.0000033060.27180.8cShamseldinAWernerD. Selection of competitive strains of Rhizobium nodulating Phaseolus vulgaris and adapted to environmental conditions in Egypt, using the gus-reporter gene technique. World J Microbiol Biotechnol. 2004Jun;20(4):377382. https://doi.org/10.1023/B:WIBI.0000033060.27180.8c10.1023/B:WIBI.0000033060.27180.8cSearch in Google Scholar

Shetty KG, Hetrick BAD, Schwab AP. Effects of mycorrhizae and fertilizer amendments on zinc tolerance of plants. Environ Pollut. 1995 Apr;88(3):307–314. https://doi.org/10.1016/0269-7491(95)93444-5ShettyKGHetrickBADSchwabAP. Effects of mycorrhizae and fertilizer amendments on zinc tolerance of plants. Environ Pollut. 1995Apr;88(3):307314. https://doi.org/10.1016/0269-7491(95)93444-510.1016/0269-7491(95)93444-5Search in Google Scholar

Sijilmassi B, Filali-Maltouf A, Fahde S, Ennahli Y, Boughribil S, Kumar S, Amri A. In vitro plant growth promotion of rhizobium strains isolated from lentil root nodules under abiotic stresses. Agronomy. 2020 Jul;10(7):1006. https://doi.org/10.3390/agronomy10071006SijilmassiBFilali-MaltoufAFahdeSEnnahliYBoughribilSKumarSAmriA. In vitro plant growth promotion of rhizobium strains isolated from lentil root nodules under abiotic stresses. Agronomy. 2020Jul;10(7):1006. https://doi.org/10.3390/agronomy1007100610.3390/agronomy10071006Search in Google Scholar

Silva ER, Zoz J, Oliveira CES, Zuffo AM, Steiner F, Zoz T, Vendruscolo EP. Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)? Arch Microbiol. 2019 Apr;201(3):325–335. https://doi.org/10.1007/s00203-018-01617-5SilvaERZozJOliveiraCESZuffoAMSteinerFZozTVendruscoloEP. Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)?Arch Microbiol. 2019Apr;201(3):325335. https://doi.org/10.1007/s00203-018-01617-510.1007/s00203-018-01617-530617456Search in Google Scholar

Silva J, Carvalho AS, Pereira H, Teixeira P, Gibbs PA. Induction of stress tolerance in Lactobacillus delbrueckii ssp. bulgaricus by the addition of sucrose to the growth medium. J Dairy Res. 2004 Mar; 71(1):121–125. https://doi.org/10.1017/S0022029903006411SilvaJCarvalhoASPereiraHTeixeiraPGibbsPA. Induction of stress tolerance in Lactobacillus delbrueckii ssp. bulgaricus by the addition of sucrose to the growth medium. J Dairy Res. 2004Mar; 71(1):121125. https://doi.org/10.1017/S002202990300641110.1017/S002202990300641115068075Search in Google Scholar

Sindhu SS, Dua S, Verma M, Khandelwal A. Growth promotion of legumes by inoculation of rhizosphere bacteria. In: Khan MS, Musarrat J, Zaidi A, editors. Microbes for legume improvement. Vienna (Austria): Springer; 2010. p. 195–235. https://doi.org/10.1007/978-3-211-99753-6_9SindhuSSDuaSVermaMKhandelwalA. Growth promotion of legumes by inoculation of rhizosphere bacteria. In: KhanMSMusarratJZaidiA, editors. Microbes for legume improvement. Vienna (Austria): Springer; 2010. p. 195235. https://doi.org/10.1007/978-3-211-99753-6_910.1007/978-3-211-99753-6_9Search in Google Scholar

Singh A, Dipuraj MH, Kumar Y, Peter J, Mishra S, Saxena L. Optimization of production parameters and evaluation of shelf life of Rhizobium biofertilizers. Elixir Bio Tech. 2014 Feb;67:21787–21795.SinghADipurajMHKumarYPeterJMishraSSaxenaL. Optimization of production parameters and evaluation of shelf life of Rhizobium biofertilizers. Elixir Bio Tech. 2014Feb;67:2178721795.Search in Google Scholar

Somasegaran P, Hoben HJ. Handbook for rhizobia. Methods in legume-rhizobium technology. New York (USA): Springer-Verlag; 1994. https://doi.org/10.1007/978-1-4613-8375-8SomasegaranPHobenHJ. Handbook for rhizobia. Methods in legume-rhizobium technology. New York (USA): Springer-Verlag; 1994. https://doi.org/10.1007/978-1-4613-8375-810.1007/978-1-4613-8375-8Search in Google Scholar

Streeter JG. Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Microbiol. 2003 Feb;95(3):484–491. https://doi.org/10.1046/j.1365-2672.2003.02017.xStreeterJG. Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Microbiol. 2003Feb;95(3):484491. https://doi.org/10.1046/j.1365-2672.2003.02017.x10.1046/j.1365-2672.2003.02017.x12911696Search in Google Scholar

Suyal DC, Soni R, Sai S, Goel R. Microbial inoculants as biofertilizer. In: Singh D, Singh H, Prabha R, editors. Microbial inoculants in sustainable agricultural productivity. New Delhi (India): Springer; 2016. p. 311–318. https://doi.org/10.1007/978-81-322-2647-5_18SuyalDCSoniRSaiSGoelR. Microbial inoculants as biofertilizer. In: SinghDSinghHPrabhaR, editors. Microbial inoculants in sustainable agricultural productivity. New Delhi (India): Springer; 2016. p. 311318. https://doi.org/10.1007/978-81-322-2647-5_1810.1007/978-81-322-2647-5_18Search in Google Scholar

Talbi C, Argandoña M, Salvador M, Alché JD, Vargas C, Bedmar EJ, Delgado MJ. Burkholderia phymatum improves salt tolerance of symbiotic nitrogen fixation in Phaseolus vulgaris. Plant Soil. 2013 Jun;367(1):673–685. https://doi.org/10.1007/s11104-012-1499-6TalbiCArgandoñaMSalvadorMAlchéJDVargasCBedmarEJDelgadoMJ. Burkholderia phymatum improves salt tolerance of symbiotic nitrogen fixation in Phaseolus vulgaris. Plant Soil. 2013Jun;367(1):673685. https://doi.org/10.1007/s11104-012-1499-610.1007/s11104-012-1499-6Search in Google Scholar

Thomas CS, Xu L, Olsen BD. Effect of small molecule osmolytes on the self-assembly and functionality of globular protein-polymer diblock copolymers. Biomacromolecules. 2013 Aug;14(9):3064–3072. https://doi.org/10.1021/bm400664tThomasCSXuLOlsenBD. Effect of small molecule osmolytes on the self-assembly and functionality of globular protein-polymer diblock copolymers. Biomacromolecules. 2013Aug;14(9):30643072. https://doi.org/10.1021/bm400664t10.1021/bm400664t23941572Search in Google Scholar

Tukey JW. Comparing individual means in the analysis of variance. Biometrics. 1949 Jun;5(2):99–114.TukeyJW. Comparing individual means in the analysis of variance. Biometrics. 1949Jun;5(2):99114.10.2307/3001913Search in Google Scholar

Uma C, Sivagurunathan P, Sangeetha D. Performance of bradyrhizobial isolates under drought conditions. Int J Curr Microbiol App Sci. 2013 May; 2(5):228–232.UmaCSivagurunathanPSangeethaD. Performance of bradyrhizobial isolates under drought conditions. Int J Curr Microbiol App Sci. 2013May; 2(5):228232.Search in Google Scholar

Wang, Y, Zhang Z, Zhang P, Cao Y, Hu T, & Yang P. Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.) Plant soil. 2016 Jan; 402(1–2):247–261. https://doi.org/10.1007/s11104-016-2792-6WangYZhangZZhangPCaoYHuT, & YangP. Rhizobium symbiosis contribution to short-term salt stress tolerance in alfalfa (Medicago sativa L.)Plant soil. 2016Jan; 402(1–2):247261. https://doi.org/10.1007/s11104-016-2792-610.1007/s11104-016-2792-6Search in Google Scholar

Wei GH, Yang XY, Zhang ZX, Yang YZ, Lindsröm K. Strain Mesorhizobium sp. CCNWGX035: A stress-tolerant isolate from Glycyrrhiza glabra displaying a wide host range of nodulation. Pedosphere. 2008 Feb; 18(1):102–112. https://doi.org/10.1016/S1002-0160(07)60108-8WeiGHYangXYZhangZXYangYZLindsrömK. Strain Mesorhizobium sp. CCNWGX035: A stress-tolerant isolate from Glycyrrhiza glabra displaying a wide host range of nodulation. Pedosphere. 2008Feb; 18(1):102112. https://doi.org/10.1016/S1002-0160(07)60108-810.1016/S1002-0160(07)60108-8Search in Google Scholar

Wielbo J, Kidaj D, Koper P, Kubik-Komar A, Skorupska A. The effect of biotic and physical factors on the competitive ability of Rhizobium leguminosarum. Cent Eur J Biol. 2012; 7(1):13–24. https://doi.org/10.2478/s11535-011-0085-xWielboJKidajDKoperPKubik-KomarASkorupskaA. The effect of biotic and physical factors on the competitive ability of Rhizobium leguminosarum. Cent Eur J Biol. 2012; 7(1):1324. https://doi.org/10.2478/s11535-011-0085-x10.2478/s11535-011-0085-xSearch in Google Scholar

Wilson K J, Sessitsch A, Corbo JC, Giller KE, Akkermans AD, Jefferson RA. β-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology. 1995 Jul; 141(7):1691–1705. https://doi.org/10.1099/13500872-141-7-1691Wilson KJSessitschACorboJCGillerKEAkkermansADJeffersonRA. β-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology. 1995Jul; 141(7):16911705. https://doi.org/10.1099/13500872-141-7-169110.1099/13500872-141-7-16917551037Search in Google Scholar

Zhang J, Singh D, Guo C, Shang Y, Peng S. Rhizobia at extremes of acidity, alkalinity, salinity, and temperature. In: Singh R, Manchanda G, Maurya I, Wei Y, editors. Microbial versatility in varied environments. Singapore (Singapore): Springer; 2020. p. 51–65. https://doi.org/10.1007/978-981-15-3028-9_4ZhangJSinghDGuoCShangYPengS. Rhizobia at extremes of acidity, alkalinity, salinity, and temperature. In: SinghRManchandaGMauryaIWeiY, editors. Microbial versatility in varied environments. Singapore (Singapore): Springer; 2020. p. 5165. https://doi.org/10.1007/978-981-15-3028-9_410.1007/978-981-15-3028-9_4Search in Google Scholar

eISSN:
2544-4646
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Microbiology and Virology