Accesso libero

The Pathogenesis of Aspergillus fumigatus, Host Defense Mechanisms, and the Development of AFMP4 Antigen as a Vaccine

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Alanio A, Desnos-Ollivier M, Garcia-Hermoso D, Bretagne S. Investigating clinical issues by genotyping of medically important fungi: why and how? Clin Microbiol Rev. 2017 Jul;30(3):671–707. https://doi.org/10.1128/CMR.00043-16AlanioADesnos-OllivierMGarcia-HermosoDBretagneS. Investigating clinical issues by genotyping of medically important fungi: why and how?Clin Microbiol Rev.2017Jul;30(3):671707. https://doi.org/10.1128/CMR.00043-1610.1128/CMR.00043-16547522428490578Search in Google Scholar

Almeida MC, Antunes D, Silva BMA, Rodrigues L, Mota M, Borges O, Fernandes C, Gonçalves T. Early interaction of alternaria infectoria conidia with macrophages. Mycopathologia. 2019 Jun;184(3):383–392. https://doi.org/10.1007/s11046-019-00339-6AlmeidaMCAntunesDSilvaBMARodriguesLMotaMBorgesOFernandesCGonçalvesT. Early interaction of alternaria infectoria conidia with macrophages. Mycopathologia.2019Jun;184(3):383392. https://doi.org/10.1007/s11046-019-00339-610.1007/s11046-019-00339-631183740Search in Google Scholar

Anthoney N, Foldi I, Hidalgo A. Toll and Toll-like receptor signalling in development. Development. 2018 May 01;145(9):dev156018. https://doi.org/10.1242/dev.156018AnthoneyNFoldiIHidalgoA. Toll and Toll-like receptor signalling in development. Development.2018May 01;145(9):dev156018. https://doi.org/10.1242/dev.15601810.1242/dev.15601829695493Search in Google Scholar

Arias M, Santiago L, Vidal-García M, Redrado S, Lanuza P, Comas L, Domingo MP, Rezusta A, Gálvez EM. Preparations for invasion: modulation of host lung immunity during pulmonary aspergillosis by gliotoxin and other fungal secondary metabolites. Front Immunol. 2018 Nov 6;9:2549. https://doi.org/10.3389/fimmu.2018.02549AriasMSantiagoLVidal-GarcíaMRedradoSLanuzaPComasLDomingoMPRezustaAGálvezEM. Preparations for invasion: modulation of host lung immunity during pulmonary aspergillosis by gliotoxin and other fungal secondary metabolites. Front Immunol.2018Nov 6;9:2549. https://doi.org/10.3389/fimmu.2018.0254910.3389/fimmu.2018.02549623261230459771Search in Google Scholar

Barac A, Vukicevic TA, Ilic AD, Rubino S, Zugic V, Stevanovic G. Complications of chronic necrotizing pulmonary aspergillosis: review of published case reports. Rev Inst Med Trop São Paulo. 2017; 59(0):e19. https://doi.org/10.1590/s1678-9946201759019BaracAVukicevicTAIlicADRubinoSZugicVStevanovicG. Complications of chronic necrotizing pulmonary aspergillosis: review of published case reports. Rev Inst Med Trop São Paulo.2017; 59(0):e19. https://doi.org/10.1590/s1678-994620175901910.1590/s1678-9946201759019Search in Google Scholar

Bazan SB, Walch-Rückheim B, Schmitt MJ, Breinig F. Maturation and cytokine pattern of human dendritic cells in response to different yeasts. Med Microbiol Immunol (Berl). 2018 Feb;207(1):75–81. https://doi.org/10.1007/s00430-017-0528-8BazanSBWalch-RückheimBSchmittMJBreinigF. Maturation and cytokine pattern of human dendritic cells in response to different yeasts. Med Microbiol Immunol (Berl).2018Feb;207(1):7581. https://doi.org/10.1007/s00430-017-0528-810.1007/s00430-017-0528-829164392Search in Google Scholar

Boniche C, Rossi SA, Kischkel B, Barbalho FV, Moura ÁND, Nosanchuk JD, Travassos LR, Taborda CP. Immunotherapy against systemic fungal infections based on monoclonal antibodies. J Fungi (Basel). 2020 Feb 29;6(1):31. https://doi.org/10.3390/jof6010031BonicheCRossiSAKischkelBBarbalhoFVMouraÁNDNosanchukJDTravassosLRTabordaCP. Immunotherapy against systemic fungal infections based on monoclonal antibodies. J Fungi (Basel).2020Feb 29;6(1):31. https://doi.org/10.3390/jof601003110.3390/jof6010031715120932121415Search in Google Scholar

Bonnet S, Duléry R, Regany K, Bouketouche M, Magro L, Coiteux V, Alfandari S, Berthon C, Quesnel B, Yakoub-Agha I. Long-term follow up of invasive aspergillosis in allogeneic stem cell transplantation recipients and leukemia patients: differences in risk factors and outcomes. Curr Res Transl Med. 2017 Apr-Jun;65(2):77–81. https://doi.org/10.1016/j.retram.2017.05.003BonnetSDuléryRReganyKBouketoucheMMagroLCoiteuxVAlfandariSBerthonCQuesnelBYakoub-AghaI. Long-term follow up of invasive aspergillosis in allogeneic stem cell transplantation recipients and leukemia patients: differences in risk factors and outcomes. Curr Res Transl Med.2017Apr-Jun;65(2):7781. https://doi.org/10.1016/j.retram.2017.05.00310.1016/j.retram.2017.05.00328689016Search in Google Scholar

Briard B, Karki R, Malireddi RKS, Bhattacharya A, Place DE, Mavuluri J, Peters JL, Vogel P, Yamamoto M, Kanneganti TD. Fungal ligands released by innate immune effectors promote inflammasome activation during Aspergillus fumigatus infection. Nat Microbiol. 2019 Feb;4(2):316–327. https://doi.org/10.1038/s41564-018-0298-0BriardBKarkiRMalireddiRKSBhattacharyaAPlaceDEMavuluriJPetersJLVogelPYamamotoMKannegantiTD. Fungal ligands released by innate immune effectors promote inflammasome activation during Aspergillus fumigatus infection. Nat Microbiol.2019Feb;4(2):316327. https://doi.org/10.1038/s41564-018-0298-010.1038/s41564-018-0298-0661950130510167Search in Google Scholar

Catellani M, Lico C, Cerasi M, Massa S, Bromuro C, Torosantucci A, Benvenuto E, Capodicasa C. Optimised production of an anti-fungal antibody in Solanaceae hairy roots to develop new formulations against Candida albicans. BMC Biotechnol. 2020 Dec;20(1):15. https://doi.org/10.1186/s12896-020-00607-0CatellaniMLicoCCerasiMMassaSBromuroCTorosantucciABenvenutoECapodicasaC. Optimised production of an anti-fungal antibody in Solanaceae hairy roots to develop new formulations against Candida albicans. BMC Biotechnol.2020Dec;20(1):15. https://doi.org/10.1186/s12896-020-00607-010.1186/s12896-020-00607-0706903332164664Search in Google Scholar

Chauvin D, Hust M, Schütte M, Chesnay A, Parent C, Moreira GMSG, Arroyo J, Sanz AB, Pugnière M, Martineau P, et al. Targeting Aspergillus fumigatus Crf transglycosylases with neutralizing antibody is relevant but not sufficient to erase fungal burden in a neutropenic rat model. Front Microbiol. 2019 Mar 26;10:600. https://doi.org/10.3389/fmicb.2019.00600ChauvinDHustMSchütteMChesnayAParentCMoreiraGMSGArroyoJSanzABPugnièreMMartineauP. Targeting Aspergillus fumigatus Crf transglycosylases with neutralizing antibody is relevant but not sufficient to erase fungal burden in a neutropenic rat model. Front Microbiol.2019Mar 26;10:600. https://doi.org/10.3389/fmicb.2019.0060010.3389/fmicb.2019.00600644362730972049Search in Google Scholar

Cutler JE, Deepe GS Jr, Klein BS. Advances in combating fungal diseases: vaccines on the threshold. Nat Rev Microbiol. 2007 Jan;5(1):13–28. https://doi.org/10.1038/nrmicro1537CutlerJEDeepeGSJrKleinBS. Advances in combating fungal diseases: vaccines on the threshold. Nat Rev Microbiol.2007Jan;5(1):1328. https://doi.org/10.1038/nrmicro153710.1038/nrmicro1537221430317160002Search in Google Scholar

Da Silva LBR, Taborda CP, Nosanchuk JD. Advances in fungal peptide vaccines. J Fungi (Basel). 2020 Jul 25;6(3):119. https://doi.org/10.3390/jof6030119Da SilvaLBRTabordaCPNosanchukJD. Advances in fungal peptide vaccines. J Fungi (Basel).2020Jul 25;6(3):119. https://doi.org/10.3390/jof603011910.3390/jof6030119755841232722452Search in Google Scholar

Dai C, Wu J, Chen C, Wu X. Interactions of thymic stromal lymphopoietin with TLR2 and TLR4 regulate anti-fungal innate immunity in Aspergillus fumigatus-induced corneal infection. Exp Eye Res. 2019 May;182:19–29. https://doi.org/10.1016/j.exer.2019.02.020DaiCWuJChenCWuX. Interactions of thymic stromal lymphopoietin with TLR2 and TLR4 regulate anti-fungal innate immunity in Aspergillus fumigatus-induced corneal infection. Exp Eye Res.2019May;182:1929. https://doi.org/10.1016/j.exer.2019.02.02010.1016/j.exer.2019.02.02030853520Search in Google Scholar

Darling BA, Milder EA. Invasive aspergillosis. Pediatr Rev. 2018 Sep;39(9):476–478. https://doi.org/10.1542/pir.2017-0129DarlingBAMilderEA. Invasive aspergillosis. Pediatr Rev.2018Sep;39(9):476478. https://doi.org/10.1542/pir.2017-012910.1542/pir.2017-012930171061Search in Google Scholar

Dewi I, van de Veerdonk F, Gresnigt M. The multifaceted role of T-helper responses in host defense against Aspergillus fumigatus. J Fungi (Basel). 2017 Oct 04;3(4):55. https://doi.org/10.3390/jof3040055DewiIvan de VeerdonkFGresnigtM. The multifaceted role of T-helper responses in host defense against Aspergillus fumigatus. J Fungi (Basel).2017Oct 04;3(4):55. https://doi.org/10.3390/jof304005510.3390/jof3040055575315729371571Search in Google Scholar

Diaz-Arevalo D, Kalkum M. CD4+ T cells mediate aspergillosis vaccine protection. Methods Mol Biol. 2017;1625:281–293. https://doi.org/10.1007/978-1-4939-7104-6_19Diaz-ArevaloDKalkumM. CD4+ T cells mediate aspergillosis vaccine protection. Methods Mol Biol.2017;1625:281293. https://doi.org/10.1007/978-1-4939-7104-6_1910.1007/978-1-4939-7104-6_1928584997Search in Google Scholar

Dos Santos RAC, Steenwyk JL, Rivero-Menendez O, Mead ME, Silva LP, Bastos RW, Alastruey-Izquierdo A, Goldman GH, Rokas A. Genomic and phenotypic heterogeneity of clinical isolates of the human pathogens Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiaffinis. Front Genet. 2020 May 12;11:459. https://doi.org/10.3389/fgene.2020.00459Dos SantosRACSteenwykJLRivero-MenendezOMeadMESilvaLPBastosRWAlastruey-IzquierdoAGoldmanGHRokasA. Genomic and phenotypic heterogeneity of clinical isolates of the human pathogens Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiaffinis. Front Genet.2020May 12;11:459. https://doi.org/10.3389/fgene.2020.0045910.3389/fgene.2020.00459723630732477406Search in Google Scholar

Dutta O, Espinosa V, Wang K, Avina S, Rivera A. Dectin-1 promotes type I and III interferon expression to support optimal antifungal immunity in the lung. Front Cell Infect Microbiol. 2020 Jul 8;10:321. https://doi.org/10.3389/fcimb.2020.00321DuttaOEspinosaVWangKAvinaSRiveraA. Dectin-1 promotes type I and III interferon expression to support optimal antifungal immunity in the lung. Front Cell Infect Microbiol.2020Jul 8;10:321. https://doi.org/10.3389/fcimb.2020.0032110.3389/fcimb.2020.00321736081132733815Search in Google Scholar

Ferling I, Dunn JD, Ferling A, Soldati T, Hillmann F. Conidial melanin of the human-pathogenic fungus Aspergillus fumigatus disrupts cell autonomous defenses in amoebae. MBio. 2020 May 26; 11(3):e00862–20. https://doi.org/10.1128/mBio.00862-20FerlingIDunnJDFerlingASoldatiTHillmannF. Conidial melanin of the human-pathogenic fungus Aspergillus fumigatus disrupts cell autonomous defenses in amoebae. MBio.2020May 26; 11(3):e0086220. https://doi.org/10.1128/mBio.00862-2010.1128/mBio.00862-20725120832457245Search in Google Scholar

Filler SG, Sheppard DC. Fungal invasion of normally non-phagocytic host cells. PLoS Pathog. 2006;2(12):e129. https://doi.org/10.1371/journal.ppat.0020129FillerSGSheppardDC. Fungal invasion of normally non-phagocytic host cells. PLoS Pathog.2006;2(12):e129. https://doi.org/10.1371/journal.ppat.002012910.1371/journal.ppat.0020129175719917196036Search in Google Scholar

Fraga-Silva TFC, Mimura LAN, Leite LCT, Borim PA, Ishikawa LLW, Venturini J, Arruda MSP, Sartori A. Gliotoxin aggravates experimental autoimmune encephalomyelitis by triggering neuroinflammation. Toxins (Basel). 2019 Jul 26;11(8):443. https://doi.org/10.3390/toxins11080443Fraga-SilvaTFCMimuraLANLeiteLCTBorimPAIshikawaLLWVenturiniJArrudaMSPSartoriA. Gliotoxin aggravates experimental autoimmune encephalomyelitis by triggering neuroinflammation. Toxins (Basel).2019Jul 26;11(8):443. https://doi.org/10.3390/toxins1108044310.3390/toxins11080443672273331357414Search in Google Scholar

Gamaletsou MN, Walsh TJ, Sipsas NV. Invasive fungal infections in patients with hematological malignancies: emergence of resistant pathogens and new antifungal therapies. Turk J Haematol. 2018 Feb 26;35(1):1–11. https://doi.org/10.4274/tjh.2018.0007GamaletsouMNWalshTJSipsasNV. Invasive fungal infections in patients with hematological malignancies: emergence of resistant pathogens and new antifungal therapies. Turk J Haematol.2018Feb 26;35(1):111. https://doi.org/10.4274/tjh.2018.000710.4274/tjh.2018.0007584376829391334Search in Google Scholar

Garth JM, Mackel JJ, Reeder KM, Blackburn JP, Dunaway CW, Yu Z, Matalon S, Fitz L, Steele C. Acidic mammalian chitinase negatively affects immune responses during acute and chronic Aspergillus fumigatus exposure. Infect Immun. 2018 Apr 30;86(7):e00944–17. https://doi.org/10.1128/IAI.00944-17GarthJMMackelJJReederKMBlackburnJPDunawayCWYuZMatalonSFitzLSteeleC. Acidic mammalian chitinase negatively affects immune responses during acute and chronic Aspergillus fumigatus exposure. Infect Immun.2018Apr 30;86(7):e0094417. https://doi.org/10.1128/IAI.00944-1710.1128/IAI.00944-17601365729712728Search in Google Scholar

Garth JM, Steele C. Innate lung defense during invasive aspergillosis: new mechanisms. J Innate Immun. 2017;9(3):271–280. https://doi.org/10.1159/000455125GarthJMSteeleC. Innate lung defense during invasive aspergillosis: new mechanisms. J Innate Immun.2017;9(3):271280. https://doi.org/10.1159/00045512510.1159/000455125547523028231567Search in Google Scholar

Guo Y, Kasahara S, Jhingran A, Tosini NL, Zhai B, Aufiero MA, Mills KAM, Gjonbalaj M, Espinosa V, Rivera A, et al. During Aspergillus infection, monocyte-derived DCs, neutrophils, and plasmacytoid DCs enhance innate immune defense through CXCR3-dependent crosstalk. Cell Host Microbe. 2020 Jul 8;28(1):104–116.e4. https://doi.org/10.1016/j.chom.2020.05.002GuoYKasaharaSJhingranATosiniNLZhaiBAufieroMAMillsKAMGjonbalajMEspinosaVRiveraA. During Aspergillus infection, monocyte-derived DCs, neutrophils, and plasmacytoid DCs enhance innate immune defense through CXCR3-dependent crosstalk. Cell Host Microbe.2020Jul 8;28(1):104116.e4. https://doi.org/10.1016/j.chom.2020.05.00210.1016/j.chom.2020.05.002726322732485165Search in Google Scholar

Gupta N, Singh PK, Revankar SG, Chandrasekar PH, Kumar A. Pathobiology of Aspergillus fumigatus endophthalmitis in immunocompetent and immunocompromised mice. Microorganisms. 2019 Aug 28;7(9):297. https://doi.org/10.3390/microorganisms7090297GuptaNSinghPKRevankarSGChandrasekarPHKumarA. Pathobiology of Aspergillus fumigatus endophthalmitis in immunocompetent and immunocompromised mice. Microorganisms.2019Aug 28;7(9):297. https://doi.org/10.3390/microorganisms709029710.3390/microorganisms7090297678092231466325Search in Google Scholar

Hoenigl M, Prattes J, Neumeister P, Wölfler A, Krause R. Real-world challenges and unmet needs in the diagnosis and treatment of suspected invasive pulmonary aspergillosis in patients with haematological diseases: An illustrative case study. Mycoses. 2018 Mar; 61(3):201–205. https://doi.org/10.1111/myc.12727HoeniglMPrattesJNeumeisterPWölflerAKrauseR. Real-world challenges and unmet needs in the diagnosis and treatment of suspected invasive pulmonary aspergillosis in patients with haematological diseases: An illustrative case study. Mycoses.2018Mar; 61(3):201205. https://doi.org/10.1111/myc.1272710.1111/myc.1272729112326Search in Google Scholar

Jović Z, Janković SM, Ružić Zečević D, Milovanović D, Stefanović S, Folić M, Milovanović J, Kostić M. Clinical pharmacokinetics of second-generation triazoles for the treatment of invasive aspergillosis and candidiasis. Eur J Drug Metab Pharmacokinet. 2019 Apr; 44(2):139–157. https://doi.org/10.1007/s13318-018-0513-7JovićZJankovićSMRužić ZečevićDMilovanovićDStefanovićSFolićMMilovanovićJKostićM. Clinical pharmacokinetics of second-generation triazoles for the treatment of invasive aspergillosis and candidiasis. Eur J Drug Metab Pharmacokinet.2019Apr; 44(2):139157. https://doi.org/10.1007/s13318-018-0513-710.1007/s13318-018-0513-730284178Search in Google Scholar

Khan MA, Ali ZS, Sweezey N, Grasemann H, Palaniyar N. Progression of cystic fibrosis lung disease from childhood to adulthood: neutrophils, neutrophil extracellular trap (NET) formation, and NET degradation. Genes (Basel). 2019 Feb 26;10(3):183. https://doi.org/10.3390/genes10030183KhanMAAliZSSweezeyNGrasemannHPalaniyarN. Progression of cystic fibrosis lung disease from childhood to adulthood: neutrophils, neutrophil extracellular trap (NET) formation, and NET degradation. Genes (Basel).2019Feb 26;10(3):183. https://doi.org/10.3390/genes1003018310.3390/genes10030183647157830813645Search in Google Scholar

Khani S, Seyedjavadi SS, Hosseini HM, Goudarzi M, Valadbeigi S, Khatami S, Ajdary S, Eslamifar A, Amani J, Imani Fooladi AA, et al. Effects of the antifungal peptide Skh-AMP1 derived from Satureja khuzistanica on cell membrane permeability, ROS production, and cell morphology of conidia and hyphae of Aspergillus fumigatus. Peptides. 2020 Jan;123:170195. https://doi.org/10.1016/j.peptides.2019.170195KhaniSSeyedjavadiSSHosseiniHMGoudarziMValadbeigiSKhatamiSAjdarySEslamifarAAmaniJImani FooladiAA. Effects of the antifungal peptide Skh-AMP1 derived from Satureja khuzistanica on cell membrane permeability, ROS production, and cell morphology of conidia and hyphae of Aspergillus fumigatus. Peptides.2020Jan;123:170195. https://doi.org/10.1016/j.peptides.2019.17019510.1016/j.peptides.2019.17019531704210Search in Google Scholar

Krüger T, Luo T, Schmidt H, Shopova I, Kniemeyer O. Challenges and strategies for proteome analysis of the interaction of human pathogenic fungi with host immune cells. Proteomes. 2015 Dec 14;3(4):467–495. https://doi.org/10.3390/proteomes3040467KrügerTLuoTSchmidtHShopovaIKniemeyerO. Challenges and strategies for proteome analysis of the interaction of human pathogenic fungi with host immune cells. Proteomes.2015Dec 14;3(4):467495. https://doi.org/10.3390/proteomes304046710.3390/proteomes3040467521739028248281Search in Google Scholar

Latgé JP, Chamilos G. Aspergillus fumigatus and aspergillosis in 2019. Clin Microbiol Rev. 2019 Nov 13;33(1):e00140–18. https://doi.org/10.1128/CMR.00140-18LatgéJPChamilosG. Aspergillus fumigatus and aspergillosis in 2019. Clin Microbiol Rev.2019Nov 13;33(1):e0014018. https://doi.org/10.1128/CMR.00140-1810.1128/CMR.00140-18686000631722890Search in Google Scholar

Levitz SM. Aspergillus vaccines: hardly worth studying or worthy of hard study? Med Mycol. 2017 Jan 01;55(1):103–108. https://doi.org/10.1093/mmy/myw081LevitzSM. Aspergillus vaccines: hardly worth studying or worthy of hard study?Med Mycol.2017Jan 01;55(1):103108. https://doi.org/10.1093/mmy/myw08110.1093/mmy/myw081516659027639242Search in Google Scholar

Li T, Zhang Z, Li X, Dong G, Zhang M, Xu Z, Yang J. Neutrophil extracellular traps: signaling properties and disease relevance. Mediators Inflamm. 2020 Jul 28;2020:1–14. https://doi.org/10.1155/2020/9254087LiTZhangZLiXDongGZhangMXuZYangJ. Neutrophil extracellular traps: signaling properties and disease relevance. Mediators Inflamm.2020Jul 28;2020:114. https://doi.org/10.1155/2020/925408710.1155/2020/9254087740702032774152Search in Google Scholar

Li W, Yan J, Yu Y. Geometrical reorganization of Dectin-1 and TLR2 on single phagosomes alters their synergistic immune signaling. Proc Natl Acad Sci USA. 2019 Dec 10;116(50):25106–25114. https://doi.org/10.1073/pnas.1909870116LiWYanJYuY. Geometrical reorganization of Dectin-1 and TLR2 on single phagosomes alters their synergistic immune signaling. Proc Natl Acad Sci USA.2019Dec 10;116(50):2510625114. https://doi.org/10.1073/pnas.190987011610.1073/pnas.1909870116691117731754039Search in Google Scholar

Liedke SC, Miranda DZ, Gomes KX, Gonçalves JLS, Frases S, Nosanchuk JD, Rodrigues ML, Nimrichter L, Peralta JM, Guimarães AJ. Characterization of the antifungal functions of a WGA-Fc (IgG2a) fusion protein binding to cell wall chitin oligomers. Sci Rep. 2017 Dec;7(1):12187. https://doi.org/10.1038/s41598-017-12540-yLiedkeSCMirandaDZGomesKXGonçalvesJLSFrasesSNosanchukJDRodriguesMLNimrichterLPeraltaJMGuimarãesAJ. Characterization of the antifungal functions of a WGA-Fc (IgG2a) fusion protein binding to cell wall chitin oligomers. Sci Rep.2017Dec;7(1):12187. https://doi.org/10.1038/s41598-017-12540-y10.1038/s41598-017-12540-y561027228939893Search in Google Scholar

Liu C, Wang M, Sun W, Cai F, Geng S, Su X, Shi Y. PU.1 serves a critical role in the innate defense against Aspergillus fumigatus via dendritic cell-associated C-type lectin receptor-1 and Toll-like receptors-2 and 4 in THP-1-derived macrophages. Mol Med Rep. 2017 Jun;15(6):4084–4092. https://doi.org/10.3892/mmr.2017.6504LiuCWangMSunWCaiFGengSSuXShiY. PU.1 serves a critical role in the innate defense against Aspergillus fumigatus via dendritic cell-associated C-type lectin receptor-1 and Toll-like receptors-2 and 4 in THP-1-derived macrophages. Mol Med Rep.2017Jun;15(6):40844092. https://doi.org/10.3892/mmr.2017.650410.3892/mmr.2017.6504543620928440496Search in Google Scholar

Mackel JJ, Steele C. Host defense mechanisms against Aspergillus fumigatus lung colonization and invasion. Curr Opin Microbiol. 2019 Dec;52:14–19. https://doi.org/10.1016/j.mib.2019.04.003MackelJJSteeleC. Host defense mechanisms against Aspergillus fumigatus lung colonization and invasion. Curr Opin Microbiol.2019Dec;52:1419. https://doi.org/10.1016/j.mib.2019.04.00310.1016/j.mib.2019.04.003685852031103956Search in Google Scholar

Masaki K, Fukunaga K, Matsusaka M, Kabata H, Tanosaki T, Mochimaru T, Kamatani T, Ohtsuka K, Baba R, Ueda S, et al. Characteristics of severe asthma with fungal sensitization. Ann Allergy Asthma Immunol. 2017 Sep;119(3):253–257. https://doi.org/10.1016/j.anai.2017.07.008MasakiKFukunagaKMatsusakaMKabataHTanosakiTMochimaruTKamataniTOhtsukaKBabaRUedaS. Characteristics of severe asthma with fungal sensitization. Ann Allergy Asthma Immunol.2017Sep;119(3):253257. https://doi.org/10.1016/j.anai.2017.07.00810.1016/j.anai.2017.07.00828801088Search in Google Scholar

Matveev AL, Krylov VB, Khlusevich YA, Baykov IK, Yashunsky DV, Emelyanova LA, Tsvetkov YE, Karelin AA, Bardashova AV, Wong SSW, et al. Novel mouse monoclonal antibodies specifically recognizing β-(1→3)-D-glucan antigen. PLoS One. 2019 Apr 25;14(4):e0215535. https://doi.org/10.1371/journal.pone.0215535MatveevALKrylovVBKhlusevichYABaykovIKYashunskyDVEmelyanovaLATsvetkovYEKarelinAABardashovaAVWongSSW. Novel mouse monoclonal antibodies specifically recognizing β-(1→3)-D-glucan antigen. PLoS One.2019Apr 25;14(4):e0215535. https://doi.org/10.1371/journal.pone.021553510.1371/journal.pone.0215535648356431022215Search in Google Scholar

Mead ME, Knowles SL, Raja HA, Beattie SR, Kowalski CH, Steenwyk JL, Silva LP, Chiaratto J, Ries LNA, Goldman GH, et al. Characterizing the pathogenic, genomic, and chemical traits of Aspergillus fischeri, a close relative of the major human fungal pathogen Aspergillus fumigatus. MSphere. 2019 Feb 20;4(1):e00018–19. https://doi.org/10.1128/mSphere.00018-19MeadMEKnowlesSLRajaHABeattieSRKowalskiCHSteenwykJLSilvaLPChiarattoJRiesLNAGoldmanGH. Characterizing the pathogenic, genomic, and chemical traits of Aspergillus fischeri, a close relative of the major human fungal pathogen Aspergillus fumigatus. MSphere.2019Feb 20;4(1):e0001819. https://doi.org/10.1128/mSphere.00018-1910.1128/mSphere.00018-19638296630787113Search in Google Scholar

Movahed E, Cheok YY, Tan GMY, Lee CYQ, Cheong HC, Velayuthan RD, Tay ST, Chong PP, Wong WF, Looi CY. Lung-infiltrating T helper 17 cells as the major source of interleukin-17A production during pulmonary Cryptococcus neoformans infection. BMC Immunol. 2018 Dec;19(1):32. https://doi.org/10.1186/s12865-018-0269-5MovahedECheokYYTanGMYLeeCYQCheongHCVelayuthanRDTaySTChongPPWongWFLooiCY. Lung-infiltrating T helper 17 cells as the major source of interleukin-17A production during pulmonary Cryptococcus neoformans infection. BMC Immunol.2018Dec;19(1):32. https://doi.org/10.1186/s12865-018-0269-510.1186/s12865-018-0269-5622569530409128Search in Google Scholar

Muszewska A, Piłsyk S, Perlińska-Lenart U, Kruszewska JS. Diversity of cell wall related proteins in human pathogenic fungi. J Fungi (Basel). 2017 Dec 29;4(1):6. https://doi.org/10.3390/jof4010006MuszewskaAPiłsykSPerlińska-LenartUKruszewskaJS. Diversity of cell wall related proteins in human pathogenic fungi. J Fungi (Basel).2017Dec 29;4(1):6. https://doi.org/10.3390/jof401000610.3390/jof4010006587230929371499Search in Google Scholar

Muthu V, Sehgal IS, Dhooria S, Aggarwal AN, Agarwal R. Utility of recombinant Aspergillus fumigatus antigens in the diagnosis of allergic bronchopulmonary aspergillosis: A systematic review and diagnostic test accuracy meta-analysis. Clin Exp Allergy. 2018 Sep; 48(9):1107–1136. https://doi.org/10.1111/cea.13216MuthuVSehgalISDhooriaSAggarwalANAgarwalR. Utility of recombinant Aspergillus fumigatus antigens in the diagnosis of allergic bronchopulmonary aspergillosis: A systematic review and diagnostic test accuracy meta-analysis. Clin Exp Allergy.2018Sep; 48(9):11071136. https://doi.org/10.1111/cea.1321610.1111/cea.1321629927507Search in Google Scholar

Namvar S, Warn P, Farnell E, Bromley M, Fraczek M, Bowyer P, Herrick S. Aspergillus fumigatus proteases, Asp f 5 and Asp f 13, are essential for airway inflammation and remodelling in a murine inhalation model. Clin Exp Allergy. 2015 May;45(5):982–993. https://doi.org/10.1111/cea.12426NamvarSWarnPFarnellEBromleyMFraczekMBowyerPHerrickS. Aspergillus fumigatus proteases, Asp f 5 and Asp f 13, are essential for airway inflammation and remodelling in a murine inhalation model. Clin Exp Allergy.2015May;45(5):982993. https://doi.org/10.1111/cea.1242610.1111/cea.1242625270353Search in Google Scholar

Orciuolo E, Stanzani M, Canestraro M, Galimberti S, Carulli G, Lewis R, Petrini M, Komanduri KV. Effects of Aspergillus fumigatus gliotoxin and methylprednisolone on human neutrophils: implications for the pathogenesis of invasive aspergillosis. J Leukoc Biol. 2007 Oct;82(4):839–848. https://doi.org/10.1189/jlb.0207090OrciuoloEStanzaniMCanestraroMGalimbertiSCarulliGLewisRPetriniMKomanduriKV. Effects of Aspergillus fumigatus gliotoxin and methylprednisolone on human neutrophils: implications for the pathogenesis of invasive aspergillosis. J Leukoc Biol.2007Oct;82(4):839848. https://doi.org/10.1189/jlb.020709010.1189/jlb.020709017626149Search in Google Scholar

Pagano L, Busca A, Candoni A, Cattaneo C, Cesaro S, Fanci R, Nadali G, Potenza L, Russo D, Tumbarello M, et al.; SEIFEM (Sorveglianza Epidemiologica Infezioni Fungine nelle Emopatie Maligne) Group. Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations. Blood Rev. 2017 Mar;31(2):17–29. https://doi.org/10.1016/j.blre.2016.09.002PaganoLBuscaACandoniACattaneoCCesaroSFanciRNadaliGPotenzaLRussoDTumbarelloM; SEIFEM (Sorveglianza Epidemiologica Infezioni Fungine nelle Emopatie Maligne) Group. Risk stratification for invasive fungal infections in patients with hematological malignancies: SEIFEM recommendations. Blood Rev.2017Mar;31(2):1729. https://doi.org/10.1016/j.blre.2016.09.00210.1016/j.blre.2016.09.00227682882Search in Google Scholar

Pathakumari B, Liang G, Liu W. Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother. 2020 Oct;130:110550. https://doi.org/10.1016/j.biopha.2020.110550PathakumariBLiangGLiuW. Immune defence to invasive fungal infections: A comprehensive review. Biomed Pharmacother.2020Oct;130:110550. https://doi.org/10.1016/j.biopha.2020.11055010.1016/j.biopha.2020.11055032739740Search in Google Scholar

Paulovičová L, Paulovičová E, Farkaš P, Čížová A, Bystrický P, Jančinová V, Turánek J, Pericolini E, Gabrielli E, Vecchiarelli A, et al. Bioimmunological activities of Candida glabrata cellular mannan. FEMS Yeast Res. 2019 Mar 01;19(2):19. https://doi.org/10.1093/femsyr/foz009PaulovičováLPaulovičováEFarkašPČížováABystrickýPJančinováVTuránekJPericoliniEGabrielliEVecchiarelliA. Bioimmunological activities of Candida glabrata cellular mannan. FEMS Yeast Res.2019Mar 01;19(2):19. https://doi.org/10.1093/femsyr/foz00910.1093/femsyr/foz00930689830Search in Google Scholar

Paulussen C, Hallsworth JE, Álvarez-Pérez S, Nierman WC, Hamill PG, Blain D, Rediers H, Lievens B. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol. 2017 Mar; 10(2):296–322. https://doi.org/10.1111/1751-7915.12367PaulussenCHallsworthJEÁlvarez-PérezSNiermanWCHamillPGBlainDRediersHLievensB. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol.2017Mar; 10(2):296322. https://doi.org/10.1111/1751-7915.1236710.1111/1751-7915.12367532881027273822Search in Google Scholar

Pérez-Cantero A, Serrano DR, Navarro-Rodríguez P, Schätzlein AG, Uchegbu IF, Torrado JJ, Capilla J. Increased efficacy of oral fixed-dose combination of amphotericin B and AHCC® natural adjuvant against aspergillosis. Pharmaceutics. 2019 Sep 03; 11(9):456. https://doi.org/10.3390/pharmaceutics11090456Pérez-CanteroASerranoDRNavarro-RodríguezPSchätzleinAGUchegbuIFTorradoJJCapillaJ. Increased efficacy of oral fixed-dose combination of amphotericin B and AHCC® natural adjuvant against aspergillosis. Pharmaceutics.2019Sep 03; 11(9):456. https://doi.org/10.3390/pharmaceutics1109045610.3390/pharmaceutics11090456678130331484389Search in Google Scholar

Pfannenstiel BT, Zhao X, Wortman J, Wiemann P, Throckmorton K, Spraker JE, Soukup AA, Luo X, Lindner DL, Lim FY, et al. Revitalization of a forward genetic screen identifies three new regulators of fungal secondary metabolism in the genus Aspergillus. MBio. 2017 Nov 08;8(5):e01246–17. https://doi.org/10.1128/mBio.01246-17PfannenstielBTZhaoXWortmanJWiemannPThrockmortonKSprakerJESoukupAALuoXLindnerDLLimFY. Revitalization of a forward genetic screen identifies three new regulators of fungal secondary metabolism in the genus Aspergillus. MBio.2017Nov 08;8(5):e0124617. https://doi.org/10.1128/mBio.01246-1710.1128/mBio.01246-17558791228874473Search in Google Scholar

Ravindran M, Khan MA, Palaniyar N. Neutrophil extracellular trap formation: physiology, pathology, and pharmacology. Biomolecules. 2019 Aug 14;9(8):365. https://doi.org/10.3390/biom9080365RavindranMKhanMAPalaniyarN. Neutrophil extracellular trap formation: physiology, pathology, and pharmacology. Biomolecules.2019Aug 14;9(8):365. https://doi.org/10.3390/biom908036510.3390/biom9080365672278131416173Search in Google Scholar

Ruiz-Herrera J, Ortiz-Castellanos L. Cell wall glucans of fungi. A review. The Cell Surface. 2019 Dec;5:100022. https://doi.org/10.1016/j.tcsw.2019.100022Ruiz-HerreraJOrtiz-CastellanosL. Cell wall glucans of fungi. A review. The Cell Surface.2019Dec;5:100022. https://doi.org/10.1016/j.tcsw.2019.10002210.1016/j.tcsw.2019.100022738956232743138Search in Google Scholar

Sato S, Tamai Y. Cutaneous aspergillosis disseminated from invasive pulmonary aspergillosis. Int J Infect Dis. 2019 Oct;87:13–14. https://doi.org/10.1016/j.ijid.2019.08.005SatoSTamaiY. Cutaneous aspergillosis disseminated from invasive pulmonary aspergillosis. Int J Infect Dis.2019Oct;87:1314. https://doi.org/10.1016/j.ijid.2019.08.00510.1016/j.ijid.2019.08.00531401202Search in Google Scholar

Schlam D, Canton J, Carreño M, Kopinski H, Freeman SA, Grinstein S, Fairn GD. Gliotoxin suppresses macrophage immune function by subverting phosphatidylinositol 3,4,5-trisphosphate homeostasis. MBio. 2016 May 04;7(2):e02242–15. https://doi.org/10.1128/mBio.02242-15SchlamDCantonJCarreñoMKopinskiHFreemanSAGrinsteinSFairnGD. Gliotoxin suppresses macrophage immune function by subverting phosphatidylinositol 3,4,5-trisphosphate homeostasis. MBio.2016May 04;7(2):e0224215. https://doi.org/10.1128/mBio.02242-1510.1128/mBio.02242-15481726627048806Search in Google Scholar

Schmidt S, Tramsen L, Lehrnbecher T. Natural killer cells in antifungal immunity. Front Immunol. 2017 Nov 22;8:1623. https://doi.org/10.3389/fimmu.2017.01623SchmidtSTramsenLLehrnbecherT. Natural killer cells in antifungal immunity. Front Immunol.2017Nov 22;8:1623. https://doi.org/10.3389/fimmu.2017.0162310.3389/fimmu.2017.01623570264129213274Search in Google Scholar

Schoen TJ, Rosowski EE, Knox BP, Bennin D, Keller NP, Huttenlocher A. Neutrophil phagocyte oxidase activity controls invasive fungal growth and inflammation in zebrafish. J Cell Sci. 2019 Dec 20;133(5):133. https://doi.org/10.1242/jcs.236539SchoenTJRosowskiEEKnoxBPBenninDKellerNPHuttenlocherA. Neutrophil phagocyte oxidase activity controls invasive fungal growth and inflammation in zebrafish. J Cell Sci.2019Dec 20;133(5):133. https://doi.org/10.1242/jcs.23653910.1242/jcs.236539705536631722976Search in Google Scholar

Schülke S. Induction of interleukin-10 producing dendritic cells as a tool to suppress allergen-specific T helper 2 responses. Front Immunol. 2018 Mar 19;9:455. https://doi.org/10.3389/fimmu.2018.00455SchülkeS. Induction of interleukin-10 producing dendritic cells as a tool to suppress allergen-specific T helper 2 responses. Front Immunol.2018Mar 19;9:455. https://doi.org/10.3389/fimmu.2018.0045510.3389/fimmu.2018.00455586730029616018Search in Google Scholar

Shen Q, Zhou W, Li H, Hu L, Mo H. ROS involves the fungicidal actions of thymol against spores of Aspergillus flavus via the induction of nitric oxide. PLoS One. 2016 May 19;11(5):e0155647. https://doi.org/10.1371/journal.pone.0155647ShenQZhouWLiHHuLMoH. ROS involves the fungicidal actions of thymol against spores of Aspergillus flavus via the induction of nitric oxide. PLoS One.2016May 19;11(5):e0155647. https://doi.org/10.1371/journal.pone.015564710.1371/journal.pone.0155647487299727196096Search in Google Scholar

Shenoy MK, Iwai S, Lin DL, Worodria W, Ayakaka I, Byanyima P, Kaswabuli S, Fong S, Stone S, Chang E, et al. Immune response and mortality risk relate to distinct lung microbiomes in patients with HIV and pneumonia. Am J Respir Crit Care Med. 2017 Jan; 195(1):104–114. https://doi.org/10.1164/rccm.201603-0523OCShenoyMKIwaiSLinDLWorodriaWAyakakaIByanyimaPKaswabuliSFongSStoneSChangE. Immune response and mortality risk relate to distinct lung microbiomes in patients with HIV and pneumonia. Am J Respir Crit Care Med.2017Jan; 195(1):104114. https://doi.org/10.1164/rccm.201603-0523OC10.1164/rccm.201603-0523OC521491827447987Search in Google Scholar

Shishodia SK, Tiwari S, Shankar J. Resistance mechanism and proteins in Aspergillus species against antifungal agents. Mycology. 2019 Jul 03;10(3):151–165. https://doi.org/10.1080/21501203.2019.1574927ShishodiaSKTiwariSShankarJ. Resistance mechanism and proteins in Aspergillus species against antifungal agents. Mycology.2019Jul 03;10(3):151165. https://doi.org/10.1080/21501203.2019.157492710.1080/21501203.2019.1574927669178431448149Search in Google Scholar

Shopova IA, Belyaev I, Dasari P, Jahreis S, Stroe MC, Cseresnyés Z, Zimmermann AK, Medyukhina A, Svensson CM, Krüger T, et al. Human neutrophils produce antifungal extracellular vesicles against Aspergillus fumigatus. MBio. 2020 Apr 14;11(2):e00596–20. https://doi.org/10.1128/mBio.00596-20ShopovaIABelyaevIDasariPJahreisSStroeMCCseresnyésZZimmermannAKMedyukhinaASvenssonCMKrügerT. Human neutrophils produce antifungal extracellular vesicles against Aspergillus fumigatus. MBio.2020Apr 14;11(2):e0059620. https://doi.org/10.1128/mBio.00596-2010.1128/mBio.00596-20715782032291301Search in Google Scholar

Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol. 2020 May;50(5):624–642. https://doi.org/10.1002/eji.201847811SmoleUKratzerBPicklWF. Soluble pattern recognition molecules: guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol.2020May;50(5):624642. https://doi.org/10.1002/eji.20184781110.1002/eji.201847811721699232246830Search in Google Scholar

Souza JAM, Baltazar LM, Carregal VM, Gouveia-Eufrasio L, de Oliveira AG, Dias WG, Campos Rocha M, Rocha de Miranda K, Malavazi I, Santos DA, et al. Characterization of Aspergillus fumigatus extracellular vesicles and their effects on macrophages and neutrophils functions. Front Microbiol. 2019 Sep 4;10:2008. https://doi.org/10.3389/fmicb.2019.02008SouzaJAMBaltazarLMCarregalVMGouveia-EufrasioLde OliveiraAGDiasWGCampos RochaMRocha de MirandaKMalavaziISantosDA. Characterization of Aspergillus fumigatus extracellular vesicles and their effects on macrophages and neutrophils functions. Front Microbiol.2019Sep 4;10:2008. https://doi.org/10.3389/fmicb.2019.0200810.3389/fmicb.2019.02008673816731551957Search in Google Scholar

Takazono T, Izumikawa K. Recent advances in diagnosing chronic pulmonary aspergillosis. Front Microbiol. 2018 Aug 17;9:1810. https://doi.org/10.3389/fmicb.2018.01810TakazonoTIzumikawaK. Recent advances in diagnosing chronic pulmonary aspergillosis. Front Microbiol.2018Aug 17;9:1810. https://doi.org/10.3389/fmicb.2018.0181010.3389/fmicb.2018.01810610779030174658Search in Google Scholar

Tsunawaki S, Yoshida LS, Nishida S, Kobayashi T, Shimoyama T. Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun. 2004 Jun;72(6):3373–3382. https://doi.org/10.1128/IAI.72.6.3373-3382.2004TsunawakiSYoshidaLSNishidaSKobayashiTShimoyamaT. Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun.2004Jun;72(6):33733382. https://doi.org/10.1128/IAI.72.6.3373-3382.200410.1128/IAI.72.6.3373-3382.200441571015155643Search in Google Scholar

Ulrich S, Ebel F. Monoclonal antibodies as tools to combat fungal infections. J Fungi (Basel). 2020 Feb 04;6(1):22. https://doi.org/10.3390/jof6010022UlrichSEbelF. Monoclonal antibodies as tools to combat fungal infections. J Fungi (Basel).2020Feb 04;6(1):22. https://doi.org/10.3390/jof601002210.3390/jof6010022715120632033168Search in Google Scholar

Upadhya R, Lam WC, Maybruck B, Specht CA, Levitz SM, Lodge JK. Induction of protective immunity to cryptococcal infection in mice by a heat-killed, chitosan-deficient strain of Cryptococcus neoformans. MBio. 2016 Jul 06;7(3):e00547–16. https://doi.org/10.1128/mBio.00547-16UpadhyaRLamWCMaybruckBSpechtCALevitzSMLodgeJK. Induction of protective immunity to cryptococcal infection in mice by a heat-killed, chitosan-deficient strain of Cryptococcus neoformans. MBio.2016Jul 06;7(3):e0054716. https://doi.org/10.1128/mBio.00547-1610.1128/mBio.00547-16495965227165801Search in Google Scholar

van de Peppel RJ, Visser LG, Dekkers OM, de Boer MGJ. The burden of invasive aspergillosis in patients with haematological malignancy: A meta-analysis and systematic review. J Infect. 2018 Jun;76(6):550–562. https://doi.org/10.1016/j.jinf.2018.02.012van de PeppelRJVisserLGDekkersOMde BoerMGJ. The burden of invasive aspergillosis in patients with haematological malignancy: A meta-analysis and systematic review. J Infect.2018Jun;76(6):550562. https://doi.org/10.1016/j.jinf.2018.02.01210.1016/j.jinf.2018.02.01229727605Search in Google Scholar

van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latgé JP. Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol. 2017 Nov;15(11):661–674. https://doi.org/10.1038/nrmicro.2017.90van de VeerdonkFLGresnigtMSRomaniLNeteaMGLatgéJP. Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol.2017Nov;15(11):661674. https://doi.org/10.1038/nrmicro.2017.9010.1038/nrmicro.2017.9028919635Search in Google Scholar

Wagener J, Echtenacher B, Rohde M, Kotz A, Krappmann S, Heesemann J, Ebel F. The putative alpha-1,2-mannosyltransferase AfMnt1 of the opportunistic fungal pathogen Aspergillus fumigatus is required for cell wall stability and full virulence. Eukaryot Cell. 2008 Oct;7(10):1661–1673. https://doi.org/10.1128/EC.00221-08WagenerJEchtenacherBRohdeMKotzAKrappmannSHeesemannJEbelF. The putative alpha-1,2-mannosyltransferase AfMnt1 of the opportunistic fungal pathogen Aspergillus fumigatus is required for cell wall stability and full virulence. Eukaryot Cell.2008Oct;7(10):16611673. https://doi.org/10.1128/EC.00221-0810.1128/EC.00221-08256806218708564Search in Google Scholar

Wang F, Zhang C, Jiang Y, Kou C, Kong Q, Long N, Lu L, Sang H. Innate and adaptive immune response to chronic pulmonary infection of hyphae of Aspergillus fumigatus in a new murine model. J Med Microbiol. 2017 Oct 01;66(10):1400–1408. https://doi.org/10.1099/jmm.0.000590WangFZhangCJiangYKouCKongQLongNLuLSangH. Innate and adaptive immune response to chronic pulmonary infection of hyphae of Aspergillus fumigatus in a new murine model. J Med Microbiol.2017Oct 01;66(10):14001408. https://doi.org/10.1099/jmm.0.00059010.1099/jmm.0.00059028923131Search in Google Scholar

Wang Y, Wang K, Masso-Silva JA, Rivera A, Xue C. A Heat-Killed Cryptococcus mutant strain induces host protection against multiple invasive mycoses in a murine vaccine model. MBio. 2019 Nov 26;10(6):e02145–19. https://doi.org/10.1128/mBio.02145-19WangYWangKMasso-SilvaJARiveraAXueC. A Heat-Killed Cryptococcus mutant strain induces host protection against multiple invasive mycoses in a murine vaccine model. MBio.2019Nov 26;10(6):e0214519. https://doi.org/10.1128/mBio.02145-1910.1128/mBio.02145-19687971731772051Search in Google Scholar

Woo PCY, Lau SKP, Lau CCY, Tung ETK, Au-Yeung RKH, Cai JP, Chong KTK, Sze KH, Kao RY, Hao Q, et al. Mp1p homologues as virulence factors in Aspergillus fumigatus. Med Mycol. 2018 Apr 01;56(3):350–360. https://doi.org/10.1093/mmy/myx052WooPCYLauSKPLauCCYTungETKAu-YeungRKHCaiJPChongKTKSzeKHKaoRYHaoQ. Mp1p homologues as virulence factors in Aspergillus fumigatus. Med Mycol.2018Apr 01;56(3):350360. https://doi.org/10.1093/mmy/myx05210.1093/mmy/myx05228992243Search in Google Scholar

Xiao H, Tang Y, Cheng Q, Liu J, Li X. Risk prediction and prognosis of invasive fungal disease in hematological malignancies patients complicated with bloodstream infections. Cancer Manag Res. 2020 Mar;12:2167–2175. https://doi.org/10.2147/CMAR.S238166XiaoHTangYChengQLiuJLiX. Risk prediction and prognosis of invasive fungal disease in hematological malignancies patients complicated with bloodstream infections. Cancer Manag Res.2020Mar;12:21672175. https://doi.org/10.2147/CMAR.S23816610.2147/CMAR.S238166710287732273756Search in Google Scholar

Zhang C, Chen F, Liu X, Han X, Hu Y, Su X, Chen Y, Sun Y, Han L. Gliotoxin induces cofilin phosphorylation to promote actin cytoskeleton dynamics and internalization of Aspergillus fumigatus into type II human pneumocyte cells. Front Microbiol. 2019 Jun 18;10:1345. https://doi.org/10.3389/fmicb.2019.01345ZhangCChenFLiuXHanXHuYSuXChenYSunYHanL. Gliotoxin induces cofilin phosphorylation to promote actin cytoskeleton dynamics and internalization of Aspergillus fumigatus into type II human pneumocyte cells. Front Microbiol.2019Jun 18;10:1345. https://doi.org/10.3389/fmicb.2019.0134510.3389/fmicb.2019.01345659131031275272Search in Google Scholar

eISSN:
2544-4646
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Microbiology and Virology