Accesso libero

Differentially Marked IncP-1β R751 Plasmids for Cloning via Recombineering and Conjugation

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453–1462. https://doi.org/10.1126/science.277.5331.1453BlattnerFRPlunkettG3rdBlochCAPernaNTBurlandVRileyMCollado-VidesJGlasnerJDRodeCKMayhewGF, The complete genome sequence of Escherichia coli K-12. Science.1997Sep 5;277(5331):14531462. https://doi.org/10.1126/science.277.5331.145310.1126/science.277.5331.14539278503Search in Google Scholar

Blondel CJ, Yang HJ, Castro B, Chiang S, Toro CS, Zaldívar M, Contreras I, Andrews-Polymenis HL, Santiviago CA. Contri bution of the type VI secretion system encoded in SPI-19 to chicken colonization by Salmonella enterica serotypes Gallinarum and Enteritidis. PLoS One. 2010 Jul 22;5(7):e11724. https://doi.org/10.1371/journal.pone.0011724BlondelCJYangHJCastroBChiangSToroCSZaldívarMContrerasIAndrews-PolymenisHLSantiviagoCA.Contri bution of the type VI secretion system encoded in SPI-19 to chicken colonization by Salmonella enterica serotypes Gallinarum and Enteritidis. PLoS One.2010Jul 22;5(7):e11724. https://doi.org/10.1371/journal.pone.001172410.1371/journal.pone.0011724290867620661437Search in Google Scholar

Bobik TA, Lehman BP, Yeates TO. Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Mol Microbiol. 2015 Oct;98(2):193–207. https://doi.org/10.1111/mmi.13117BobikTALehmanBPYeatesTO.Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Mol Microbiol.2015Oct;98(2):193207. https://doi.org/10.1111/mmi.1311710.1111/mmi.13117471871426148529Search in Google Scholar

Bubnov DM, Yuzbashev TV, Vybornaya TV, Netrusov AI, Sineoky SP. Development of new versatile plasmid-based systems for λRed-mediated Escherichia coli genome engineering. J Microbiol Methods. 2018 Aug;151:48–56. https://doi.org/10.1016/j.mimet.2018.06.001BubnovDMYuzbashevTVVybornayaTVNetrusovAISineokySP.Development of new versatile plasmid-based systems for λRed-mediated Escherichia coli genome engineering. J Microbiol Methods.2018Aug;151:4856. https://doi.org/10.1016/j.mimet.2018.06.00110.1016/j.mimet.2018.06.00129885886Search in Google Scholar

Chowdhury C, Sinha S, Chun S, Yeates TO, Bobik TA. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev. 2014 Sep 01;78(3):438–468. https://doi.org/10.1128/MMBR.00009-14ChowdhuryCSinhaSChunSYeatesTOBobikTA.Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev.2014Sep 01;78(3):438468. https://doi.org/10.1128/MMBR.00009-1410.1128/MMBR.00009-14418768125184561Search in Google Scholar

Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000 Jun 06;97(12):6640–6645. https://doi.org/10.1073/pnas.120163297DatsenkoKAWannerBL.One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA.2000Jun 06;97(12):66406645. https://doi.org/10.1073/pnas.12016329710.1073/pnas.1201632971868610829079Search in Google Scholar

Graf L, Wu K, Wilson JW. Transfer and analysis of Salmonella pdu genes in a range of Gram-negative bacteria demonstrate exogenous microcompartment expression across a variety of species. Microb Biotechnol. 2018 Jan;11(1):199–210. https://doi.org/10.1111/1751-7915.12863GrafLWuKWilsonJW.Transfer and analysis of Salmonella pdu genes in a range of Gram-negative bacteria demonstrate exogenous microcompartment expression across a variety of species. Microb Biotechnol.2018Jan;11(1):199210. https://doi.org/10.1111/1751-7915.1286310.1111/1751-7915.12863574380528967207Search in Google Scholar

Heinemann JA, Sprague GF Jr. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature. 1989 Jul;340(6230):205–209. https://doi.org/10.1038/340205a0HeinemannJASpragueGFJr.Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature.1989Jul;340(6230):205209. https://doi.org/10.1038/340205a010.1038/340205a02666856Search in Google Scholar

Jennings ME, Quick LN, Soni A, Davis RR, Crosby K, Ott CM, Nickerson CA, Wilson JW. Characterization of the Salmonella ente rica serovar Typhimurium ydcI gene, which encodes a conserved DNA binding protein required for full acid stress resistance. J Bacteriol. 2011 May 01;193(9):2208–2217. https://doi.org/10.1128/JB.01335-10JenningsMEQuickLNSoniADavisRRCrosbyKOttCMNickersonCAWilsonJW.Characterization of the Salmonella ente rica serovar Typhimurium ydcI gene, which encodes a conserved DNA binding protein required for full acid stress resistance. J Bacteriol.2011May 01;193(9):22082217. https://doi.org/10.1128/JB.01335-1010.1128/JB.01335-10313308921398541Search in Google Scholar

Narayanan K, Chen Q. Bacterial artificial chromosome muta genesis using recombineering. J Biomed Biotechnol. 2011;2011:1–10. https://doi.org/10.1155/2011/971296NarayananKChenQ.Bacterial artificial chromosome muta genesis using recombineering. J Biomed Biotechnol.2011;2011:110. https://doi.org/10.1155/2011/97129610.1155/2011/971296300594821197472Search in Google Scholar

Norberg P, Bergström M, Jethava V, Dubhashi D, Hermansson M. The IncP-1 plasmid backbone adapts to different host bacterial spe cies and evolves through homologous recombination. Nat Commun. 2011 Sep;2(1):268. https://doi.org/10.1038/ncomms1267NorbergPBergströmMJethavaVDubhashiDHermanssonM.The IncP-1 plasmid backbone adapts to different host bacterial spe cies and evolves through homologous recombination. Nat Commun.2011Sep;2(1):268. https://doi.org/10.1038/ncomms126710.1038/ncomms1267310452321468020Search in Google Scholar

Pansegrau W, Lanka E, Barth PT, Figurski DH, Guiney DG, Haas D, Helinski DR, Schwab H, Stanisich VA, Thomas CM. Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol. 1994 Jun; 239(5):623–663. https://doi.org/10.1006/jmbi.1994.1404PansegrauWLankaEBarthPTFigurskiDHGuineyDGHaasDHelinskiDRSchwabHStanisichVAThomasCM.Complete nucleotide sequence of Birmingham IncP alpha plasmids. Compilation and comparative analysis. J Mol Biol.1994Jun; 239(5):623663. https://doi.org/10.1006/jmbi.1994.140410.1006/jmbi.1994.14048014987Search in Google Scholar

Quick LN, Shah A, Wilson JW. A series of vectors with alternative antibiotic resistance markers for use in lambda Red recombination. J Microbiol Biotechnol. 2010 Apr;20(4):666–669. https://doi.org/10.4014/jmb.0909.09045QuickLNShahAWilsonJW.A series of vectors with alternative antibiotic resistance markers for use in lambda Red recombination. J Microbiol Biotechnol.2010Apr;20(4):666669. https://doi.org/10.4014/jmb.0909.0904510.4014/jmb.0909.0904520467236Search in Google Scholar

Santiago CP, Quick LN, Wilson JW. Self-transmissible IncP R995 plasmids with alternative markers and utility for Flp/FRT cloning strategies. J Microbiol Biotechnol. 2011 Nov 28;21(11):1123–1126. https://doi.org/10.4014/jmb.1106.06032SantiagoCPQuickLNWilsonJW.Self-transmissible IncP R995 plasmids with alternative markers and utility for Flp/FRT cloning strategies. J Microbiol Biotechnol.2011Nov 28;21(11):11231126. https://doi.org/10.4014/jmb.1106.0603210.4014/jmb.1106.0603222127122Search in Google Scholar

Sen D, Brown CJ, Top EM, Sullivan J. Inferring the evolutionary history of IncP-1 plasmids despite incongruence among backbone gene trees. Mol Biol Evol. 2013 Jan;30(1):154–166. https://doi.org/10.1093/molbev/mss210SenDBrownCJTopEMSullivanJ.Inferring the evolutionary history of IncP-1 plasmids despite incongruence among backbone gene trees. Mol Biol Evol.2013Jan;30(1):154166. https://doi.org/10.1093/molbev/mss21010.1093/molbev/mss210352514222936717Search in Google Scholar

Thorsted PB, Macartney DP, Akhtar P, Haines AS, Ali N, Davidson P, Stafford T, Pocklington MJ, Pansegrau W, Wilkins BM, et al. Complete sequence of the IncPβ plasmid R751: implications for evolution and organisation of the IncP backbone. J Mol Biol. 1998 Oct;282(5):969–990. https://doi.org/10.1006/jmbi.1998.2060ThorstedPBMacartneyDPAkhtarPHainesASAliNDavidsonPStaffordTPocklingtonMJPansegrauWWilkinsBM, Complete sequence of the IncPβ plasmid R751: implications for evolution and organisation of the IncP backbone. J Mol Biol.1998Oct;282(5):969990. https://doi.org/10.1006/jmbi.1998.206010.1006/jmbi.1998.20609753548Search in Google Scholar

Trieu-Cuot P, Carlier C, Martin P, Courvalin P. Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiol Lett. 1987 Dec;48(1-2):289–294. https://doi.org/10.1111/j.1574-6968.1987.tb02558.xTrieu-CuotPCarlierCMartinPCourvalinP.Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiol Lett.1987Dec;48(1-2):289294. https://doi.org/10.1111/j.1574-6968.1987.tb02558.x10.1111/j.1574-6968.1987.tb02558.xSearch in Google Scholar

Wang H, Li Z, Jia R, Hou Y, Yin J, Bian X, Li A, Müller R, Stewart AF, Fu J, et al. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression. Nat Protoc. 2016 Jul;11(7):1175–1190. https://doi.org/10.1038/nprot.2016.054WangHLiZJiaRHouYYinJBianXLiAMüllerRStewartAFFuJ, RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression. Nat Protoc.2016Jul;11(7):11751190. https://doi.org/10.1038/nprot.2016.05410.1038/nprot.2016.05427254463Search in Google Scholar

Waters VL. Conjugation between bacterial and mammalian cells. Nat Genet. 2001 Dec;29(4):375–376. https://doi.org/10.1038/ng779WatersVL.Conjugation between bacterial and mammalian cells. Nat Genet.2001Dec;29(4):375376. https://doi.org/10.1038/ng77910.1038/ng77911726922Search in Google Scholar

Wilson J, Nickerson C. A new experimental approach for study ing bacterial genomic island evolution identifies island genes with bacterial host-specific expression patterns. BMC Evol Biol. 2006;6(1):2. https://doi.org/10.1186/1471-2148-6-2WilsonJNickersonC.A new experimental approach for study ing bacterial genomic island evolution identifies island genes with bacterial host-specific expression patterns. BMC Evol Biol.2006;6(1):2. https://doi.org/10.1186/1471-2148-6-210.1186/1471-2148-6-2136068516396675Search in Google Scholar

Zeng F, Hao Z, Li P, Meng Y, Dong J, Lin Y. A restriction-free method for gene reconstitution using two single-primer PCRs in parallel to generate compatible cohesive ends. BMC Biotechnol. 2017 Dec;17(1):32. https://doi.org/10.1186/s12896-017-0346-5ZengFHaoZLiPMengYDongJLinY.A restriction-free method for gene reconstitution using two single-primer PCRs in parallel to generate compatible cohesive ends. BMC Biotechnol.2017Dec;17(1):32. https://doi.org/10.1186/s12896-017-0346-510.1186/s12896-017-0346-5535627728302113Search in Google Scholar

Zeng F, Zang J, Zhang S, Hao Z, Dong J, Lin Y. AFEAP cloning: a precise and efficient method for large DNA sequence assembly. BMC Biotechnol. 2017 Dec;17(1):81. https://doi.org/10.1186/s12896-017-0394-xZengFZangJZhangSHaoZDongJLinY.AFEAP cloning: a precise and efficient method for large DNA sequence assembly. BMC Biotechnol.2017Dec;17(1):81. https://doi.org/10.1186/s12896-017-0394-x10.1186/s12896-017-0394-x568689229137618Search in Google Scholar

Zeng F, Zhang S, Hao Z, Duan S, Meng Y, Li P, Dong J, Lin Y. Efficient strategy for introducing large and multiple changes in plasmid DNA. Sci Rep. 2018 Dec;8(1):1714. https://doi.org/10.1038/s41598-018-20169-8ZengFZhangSHaoZDuanSMengYLiPDongJLinY.Efficient strategy for introducing large and multiple changes in plasmid DNA. Sci Rep.2018Dec;8(1):1714. https://doi.org/10.1038/s41598-018-20169-810.1038/s41598-018-20169-8578906929379085Search in Google Scholar

eISSN:
2544-4646
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Microbiology and Virology