This work is licensed under the Creative Commons Attribution 3.0 Public License.
Yang Y., Bi J., Liu H., Li Y., Li M., Ao S., Luo Z.: Research progress on the microstructure and mechanical properties of friction stir welded Al–Li alloy joints, Journal of Manufacturing Processes, 82 (2022), 230-244.Search in Google Scholar
Lambiase F., Derazkola H.A., Simchi A.: Friction stir welding and friction spot stir welding processes of polymers-state of the art, Materials, 13 (2020), 2291.Search in Google Scholar
Çam G., Javaheri V., Heidarzadeh A.: Advances in FSW and FSSW of dissimilar Al-alloy plates, Journal of Adhesion Science and Technology, 37(2) (2023), 162-194.Search in Google Scholar
Mishra R.S., Ma Z.Y.: Friction stir welding and processing, Materials Science and Engineering: R: Reports, 50 (2005), 1-78.Search in Google Scholar
He X., Gu F., Ball A.: A review of numerical analysis of friction stir welding, Progress in Materials Science, 65 (2014), 1-66.Search in Google Scholar
Li K., Liu X., Zhao Y.: Research status and prospect of friction stir processing technology, Coatings, 9(2) (2019), 129.Search in Google Scholar
Rhodes C.G., Mahoney M.W., Bingel W.H., Spurling R.A., Bampton C.C.: Effects of friction stir welding on microstructure of 7075 aluminum, Scripta Materialia, 36 (1997), 69-75.Search in Google Scholar
Morisada Y., Fujii H., Nagaoka T., Nogi K., Fukusumi M.: Fullerene/A5083 composites fabricated by material flow during friction stir processing, Composites Part A, 38 (2007), 2097-2101.Search in Google Scholar
Meng X., Huang Y., Cao J., Shen J., dos Santos J.F.: Recent progress on control strategies for inherent issues in friction stir welding, Progress in Materials Science, 115 (2021), 100706.Search in Google Scholar
Jemioło S., Gajewski M.: Symulacja MES obróbki cieplnej wyrobów stalowych z uwzględnieniem zjawisk termometalurgicznych, Część 1. Nieustalony przepływ ciepła z uwzględnieniem przejść fazowych, Zeszyty Naukowe, Budownictwo, z. 143, Oficyna Wydawnicza PW, Warszawa 2005.Search in Google Scholar
Jemioło S., Gajewski M.: Symulacja MES obróbki cieplnej wyrobów stalowych z uwzględnieniem zjawisk termometalurgicznych, Część 2. Przykłady numeryczne z zastosowaniem programu SYSWELD, Zeszyty Naukowe, Budownictwo, z. 143, Oficyna Wydawnicza PW, Warszawa 2005.Search in Google Scholar
Jemioło S., Gajewski M.: Zastosowanie programu SYSWELD w modelowaniu resztkowych naprężeń pospawalniczych, Zeszyty Naukowe, Budownictwo, z. 143, Oficyna Wydawnicza PW, Warszawa 2005.Search in Google Scholar
Kossakowski P.G., Wciślik W., Bakalarz M.: Effect of selected friction stir welding parameters on mechanical properties of joints, Archives of Civil Engineering, 65(4) (2019), 51-62.Search in Google Scholar
Jacquin D., Guillemot G.: A review of microstructural changes occurring during FSW in aluminium alloys and their model-ling, Journal of Materials Processing Technology, 288 (2021), 116706.Search in Google Scholar
Hamilton C., Dymek S., Dryzek E., Kopyściański M., Pietras A., Węglowska A., Wróbel M.: Application of positron lifetime annihilation spectroscopy for characterization of friction stir welded dissimilar aluminum alloys, Materials Characterization, 132 (2017), 431-436.Search in Google Scholar
Patel V., Li W., Vairis A., Badheka V.: Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement, Critical Reviews in Solid State and Materials Sciences, 5 (2019), 378-426.Search in Google Scholar
Reynolds A.P.: Visualisation of material flow in autogenous friction stir welds, Science and Technology of Welding and Joining, 5(2) (2000), 120-124;Search in Google Scholar
Seidel T.U., Reynolds A.P.: Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique, Metallurgical and Materials Transactions A, 32 (2001), 2879-2884.Search in Google Scholar
Colligan K.: Material flow behavior during friction stir welding of aluminum, Welding Journal, 78 (1999), 229-s-237-s.Search in Google Scholar
Schmidt H.N.B., Dickerson T.L., Hattel J.H.: Material flow in butt friction stir welds in AA2024-T3, Acta Materialia, 54 (2006), 1199-209.Search in Google Scholar
Ouyang J.H., Kovacevic R.: Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys, Journal of Materials Science, 11 (2002), 51-63.Search in Google Scholar
Li Y., Murr L.E., McClure J.C.: Solid-state flow visualization in the friction-stir welding of 2024 Al to 6061 Al, Scripta Materialia, 40(9) 1999, 1041-1046.Search in Google Scholar
Colegrove P.A., Shercliff H.R.: 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile, Journal of Materials Science, 169 (2005), 320-327.Search in Google Scholar
Nandan R., DebRoy T., Bhadeshia H.K.D.H.: Recent advances in friction-stir welding – Process, weldment structure and properties, Progress in Materials Science, 53 (2008), 980-1023.Search in Google Scholar
El-Sayed M.M., Shash A.Y., Mahmoud T.S., Abd-Rabbou M.: Effect of friction stir welding parameters on the peak tem-perature and the mechanical properties of aluminum alloy 5083-O, Advanced Structured Materials, 72 (2018), 11-25.Search in Google Scholar
El-Sayed M.M., Shash A.Y., Abd-Rabou M., ElSherbiny M.G.: Welding and processing of metallic materials by using friction stir technique: A review, Journal of Advanced Joining Processes, 3 (2021), 100059.Search in Google Scholar
Cho J.H., Boyce D.E., Dawson P.R.: Modeling strain hardening and texture evolution in friction stir welding of stainless steel, Materials Science and Engineering: A, 398 (2005), 146-163.Search in Google Scholar
Ma Z.Y.: Friction stir processing technology: A review, Metallurgical and Materials Transactions A, 39 (2008), 642-658.Search in Google Scholar
Prakash P., Jha S.K., Lal S.P.: Numerical investigation of stirred zone shape and its effect on mechanical properties in friction stir welding process, Welding World, 63 (2019), 1531-1546.Search in Google Scholar
Chen K., Liu X., Ni J.: A review of friction stir–based processes for joining dissimilar materials, The International Journal of Advanced Manufacturing Technology, 104 (2019), 1709-1731.Search in Google Scholar
Gallais C., Denquin A., Bréchet Y., Lapasset G.: Precipitation microstructures in an AA6056 aluminium alloy after friction stir welding: characterisation and modelling, Materials Science and Engineering: A, 496 (2008), 77-89.Search in Google Scholar
Hattel J.H., Schmidt H.N.B., Tutum C.: Thermomechanical modelling of friction stir welding. The 8th International Conference Trends in Welding Research, Pine Mountain, Georgia, USA, 2008.Search in Google Scholar
Imam M., Biswas K., Racherla V.: On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys, Materials & Design, 52 (2013), 730-739.Search in Google Scholar
Jacquin D., De Meester B., Simar A., Deloison D., Montheillet F., Desrayaud C.: A simple Eulerian thermomechanical modelling of friction stir welding, Journal of Materials Processing Technology, 211(1) (2011), 57-65.Search in Google Scholar
Tang W., Guo X., McClure J.C., Murr L.E.: Heat input and temperature distribution in friction stir welding, Journal of Materials Processing and Manufacturing Science, 7(2) (1998), 163-172.Search in Google Scholar
Sharma V., Prakash U., Kumar B.V.M.: Surface composites by friction stir processing: A review, Journal of Materials Processing Technology, 224 (2015), 117-134.Search in Google Scholar
Rodrigues D.M., Loureiro A., Leitao C., Leal R.M., Chaparro B.M., Vilaça P.: Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds, Materials & Design, 30 (2009), 1913-1921.Search in Google Scholar
Węglowski M.S.: Friction stir processing – State of the art, Archives of Civil and Mechanical Engineering, 18 (2018), 114-129.Search in Google Scholar
Givi M.K.B., Asadi P.: Advances in friction stir welding and processing. Woodhead Publishing, Amsterdam, 2014.Search in Google Scholar
Kassner M.E., Barrabes S.: New developments in geometric dynamic recrystallization, Materials Science and Engineering: A, 410 (2005), 152-155.Search in Google Scholar
Heidarzadeh A., Mironov S., Kaibyshev R., Çam G., Simar A., Gerlich A., Khodabakhshi F., Mostafaei A., Field D.P., Robson J.D., Deschamps A., Withers P.J.: Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution, Progress in Materials Science, 117 (2021), 100752.Search in Google Scholar
Dudova N., Belyakov A., Sakai T., Kaibyshev R.: Dynamic recrystallization mechanisms operating in a Ni–20% Cr alloy under hot-to-warm working, Acta Materialia, 58 (2010), 3624-3632.Search in Google Scholar
Liu H., Fujii H.: Microstructural and mechanical properties of a beta-type titanium alloy joint fabricated by friction stir welding, Materials Science and Engineering: A, 711 (2018), 140-148.Search in Google Scholar
Humphreys F.J., Hatherly M.: Recrystallization and related annealing phenomena, Elsevier, 2004.Search in Google Scholar
Prabhu S.R.B., Shettigar A.K., Herbet M.A., Rao S.S.: Microstructure evolution and mechanical properties of friction stir welded AA6061/Rutile composite, Materials Research Express, 6(8) (2019), 0865i7.Search in Google Scholar
Padmanaban G., Balasubramanian V., Sarin Sundar J.K.: Influences of welding processes on microstructure, hardness, and tensile properties of AZ31B magnesium alloy, Journal of Materials Engineering and Performance, 19 (2010), 155-165.Search in Google Scholar
Wciślik W.: Experimental determination of critical void volume fraction fFfor the Gurson Tvergaard Needleman (GTN) model, Procedia Structural Integrity, 2 (2016), 1676-1683.Search in Google Scholar
Wciślik W., Pała R.: Some microstructural aspects of ductile fracture of metals, Materials, 14(15) (2021), 4321.Search in Google Scholar
Wciślik W., Lipiec S.: Void-induced ductile fracture of metals: experimental observations, Materials, 15(18) (2022), 6473.Search in Google Scholar
Dixit S., Mahata A., Mahapatra D.R., Kailas S.V., Chattopadhyay K.: Multi-layer graphene reinforced aluminum – Manufacturing of high strength composite by friction stir alloying, Composites Part B: Engineering, (136) (2018), 63-71.Search in Google Scholar
Merah N., Azeem M.A., Abubaker H.M., Al-Badour F., Albinmousa J., Sorour A.A.: Friction stir processing influence on microstructure, mechanical, and corrosion behavior of steels: a review, Materials, (14) (2021), 5023.Search in Google Scholar
Sato Y.S., Nelson T.W., Sterling C.J., Steel R.J., Pettersson C.O.: Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel, Materials Science and Engineering: A, (397) (2005), 376-384.Search in Google Scholar
Kwon Y.J., Saito N., Shigematsu I.: Friction stir process as a new manufacturing technique of ultrafine grained aluminium alloy, Journal of Materials Science, (21) (2002), 1473-1476.Search in Google Scholar
Saeid T., Abdollah-zadeh A., Assadi H., Malek Ghaini F.: Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel, Materials Science and Engineering: A, (496) (2008), 262-268.Search in Google Scholar
Ma Z.Y., Mishra R.S., Mahoney M.W.: Superplastic deformation behaviour of friction stir processed 7075Al alloy, Acta Materialia, 50(17) (2002), 4419-4430.Search in Google Scholar
Johnson P., Murugan N.: Microstructure and mechanical properties of friction stir welded AISI321 stainless steel, Journal of Materials Research and Technology, 9(3) (2020), 3967-3976.Search in Google Scholar
Gain S., Das S.K., Sanyal D., Acharyya S.K.: Exploring friction stir welding for joining 316L steel pipes for industrial applications: Mechanical and metallurgical characterization of the joint and analysis of failure, Engineering Failure Analysis, 150 (2023), 107331.Search in Google Scholar
Li H., Yang S., Zhang S., Zhang B., Jiang Z., Feng H., Han P., Li J.: Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654, Materials and Design, 118 (2017), 207-217.Search in Google Scholar
Ahmed M.M.Z., Hajlaoui K., El-Sayed Seleman M.M., Elkady M.F., Ataya S., Latief F.H., Habba M.I.A.: Microstructure and mechanical properties of friction stir welded 2205 duplex stainless steel butt joints, Materials, 14 (2021), 6640.Search in Google Scholar
Liu F.C., Nelson T.W.: In-situ grain structure and texture evolution during friction stir welding of austenite stainless steel, Materials and Design, 115 (2017), 467-478.Search in Google Scholar
Salih O.S., Ou H., Sun W., McCartney D.G.: A review of friction stir welding of aluminium matrix composites, Materials & Design, (86) (2015), 61-71.Search in Google Scholar
Zhang Z., Xiao B.L., Ma Z.Y.: Effect of welding parameters on microstructure and mechanical properties of friction stir welded 2219Al-T6 joints, Journal of Materials Science, (47) (2012), 4075-4086.Search in Google Scholar
Huang K., Marthinsen K., Zhao Q., Logé R.E.: The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials, Progress in Materials Science, (92) (2018), 284-359.Search in Google Scholar
Kloc L., Spigarelli S., Cerri E., Evangelista E., Langdon T.G.: Creep behavior of an aluminum 2024 alloy produced by powder metallurgy, Acta Materialia, (45) (1997), 529-540.Search in Google Scholar
Deschamps A., Fribourg G., Bréchet Y., Chemin J.L., Hutchinson C.R.: In situ evaluation of dynamic precipitation during plastic straining of an Al-Zn-Mg-Cu alloy, Acta Materialia, (60) (2012), 1905-1916.Search in Google Scholar
Sugimoto I., Park S.H.C., Hirano S., Saito H., Hata S.: Microscopic observation of precipitation behavior at friction stirring zone of super duplex stainless steel, Materials Transactions, 60(9) (2019), 2003-2007.Search in Google Scholar
Manugula V.L., Rajulapati K.V., Reddy G.M., Mythili R., Bhanu Sankara Rao K.: Influence of tool rotational speed and post-weld heat treatments on friction stir welded reduced activation ferritic-martensitic steel, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 48(8) (2017), 3702-3720.Search in Google Scholar
Farneze H.N., Tavares S.S.M., Pardal J.M., Londoño A.J.R., Pereira V.F., Barbosa C.: Effects of thermal aging on microstructure and corrosion resistance of AISI 317L steel weld metal in the FSW process, Materials Research, 18(2) (2015), 98-103.Search in Google Scholar
He B., Cui L., Wang D.P., Li H.J., Liu C.X.: Microstructure and mechanical properties of RAFM-316L dissimilar joints by friction stir welding with different butt joining modes, Acta Metallurgica Sinica (English Letters), 33 (2020), 135-146.Search in Google Scholar
Dumont M., Steuwer A., Deschamps A., Peel M., Withers P.J.: Microstructure mapping in friction stir welds of 7449 alu-minium alloy using SAXS, Acta Materialia, (54) (2006), 4793-4801.Search in Google Scholar
Genevois C., Deschamps A., Denquin A., Doisneau-Cottignies B.: Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds, Acta Materialia, (53) (2005), 2447-2458.Search in Google Scholar
Bastow T.J., Hill A.: Guinier-Preston and Guinier-Preston-Bagaryatsky zone reversion in Al-Cu-Mg alloys studied by NMR, Materials Science Forum, (519-521) (2006), 1385-1390.Search in Google Scholar
Morozova I., Królicka A., Obrosov A., Yang Y., Doynov N., Weiß S., Michailov V.: Precipitation phenomena in impulse friction stir welded 2024 aluminium alloy, Materials Science and Engineering A, (852) (2022), 143617.Search in Google Scholar
Ehrich J., Staron P., Karkar A., Roos A., Hanke S.: Precipitation evolution in the heat-affected zone and coating material of AA2024 processed by friction surfacing, Advanced Engineering Materials, (24) (2022), 2201019.Search in Google Scholar
Ostermann F.: Anwendungstechnologie aluminium. Springer-Verlag, Berlin, 2014.Search in Google Scholar
Sauvage X., Dédé A., Cabello Muñoz A., Huneau B.: Precipitate stability and recrystallisation in the weld nuggets of friction stir welded Al-Mg-Si and Al-Mg-Sc alloys, Materials Science and Engineering A, (491) (2008), 364-371.Search in Google Scholar
Hamilton C., Dymek S., Kopyściański M., Węglowska A., Pietras A.: Numerically based phase transformation maps for dissimilar aluminum alloys joined by friction stir-welding, Metals, 8(5) (2018), 324.Search in Google Scholar
Santos T.G., Miranda R.M., Vilaça P., Teixeira J.P., dos Santos J.: Microstructural mapping of friction stir welded AA 7075-T6 and AlMgSc alloys using electrical conductivity, Science and Technology of Welding and Joining, 16(7) (2011), 630-635.Search in Google Scholar
Hou J.C., Liu H.J., Zhao Y.Q.: Influences of rotation speed on microstructures and mechanical properties of 6061–T6 aluminum alloy joints fabricated by selfreacting friction stir welding tool, International Journal of Advanced Manufacturing Technology, (73) (2014), 1073-1079.Search in Google Scholar
Zhao Y., Wang C., Dong C.: Microstructural characteristics and mechanical properties of water cooling bobbin-tool friction stir welded 6063-T6 aluminum, MATEC Web of Conferences, (206) (2018), 03002.Search in Google Scholar