Accesso libero

Potential of using digestate to regenerate soil and stimulate its biological life

,  e   
05 lug 2024
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

AbdelRahman M.A.E., 2023. An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rendiconti Lincei. Scienze Fisiche e Naturali, doi.org/10.1007/s12210-023-01155-3. Search in Google Scholar

Al Seadi T., Drosg B., Fuchs W., Rutz D., Janssen R., 2013. Biogas digestate quality and utilization. pp. 267-301. In: The Biogas Handbook. Science, Production and Applications; Wellinger A., Murphy J., Baxter D.; Woodhead Publishing Limited: Oxford/Cambridge, UK; Philadelphia, PA, USA; New Delhi, India. Search in Google Scholar

Alburquerquea J.A., de la Fuente C., Campoy M., Carrasco L., Nájera I., Baixauli C., Caravaca F., Roldán A., Cegarra J., Bernal M.P., 2012. Agricultural use of digestate for horticultural crop production and improvement of soil properties. The European Journal of Agronomy, 43: 119-128, doi:10.1016/j.eja.2012.06.001. Search in Google Scholar

Banaszuk P., Wysocka-Czubaszek A., Czubaszek R., Roj-Rojewski S., 2015. Skutki energetycznego wykorzystania biomasy. Wieś i Rolnictwo, 4(169): 139-152. Search in Google Scholar

Bardgett R.D., Caruso T., 2020. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philosophical Transactions of the Royal Society B, 375: 20190112, doi: 10.1098/rstb.2019.0112. Search in Google Scholar

Barłóg P., Hlisnikovsk L., Kunzová E., 2020. Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle slurry and mineral fertilization. Agronomy, 10: 379, doi: 10.3390/agronomy10030379. Search in Google Scholar

Baryga A., Połeć B., Klasa A., 2021. The effects of soil application of digestate enriched with P, K, Mg and B on yield and processing value of sugar beets. Fermentation, 7: 241, doi: 10.3390/fermentation7040241. Search in Google Scholar

Baştabak B., Koçar G., 2020. A review of the biogas digestate in agricultural framework. Journal of Material Cycles and Waste Management, 22: 1318-1327, doi: 10.1007/s10163-020-01056-9. Search in Google Scholar

Bede S. Mickan, Ai-Tian Ren, Christopher H. Buhlmann, Anas Ghadouani, Zakaria M. Solaiman, Sasha Jenkins, Jiayin Pang, Megan H. Ryan., 2022. Closing the circle for urban food waste anaerobic digestion: The use of digestate and biochar on plant growth in potting soil. Journal of Cleaner Production, 347: 131071, doi: 10.1016/j. jclepro.2022.131071. Search in Google Scholar

Béghin-Tanneau R., Guérin F., Guiresse M., Kleiber D., Scheiner J.D., 2019. Carbon sequestration in soil amended with anaerobic digested matter. Soil and Tillage Research, 192: 87-94, doi: 10.1016/j.still.2019.04.024. Search in Google Scholar

Bertrand J.C., Caumette P., Lebaron P., Matheron R., Normand P., 2011. Microbial ecology: Microbiology of natural and anthropized environments. Presses universitaires de Pau et des Pays de l’Adour, 933 pp., doi: 10.1007/978-94-017-9118-2. Search in Google Scholar

Burg V., Rolli C., Schnorf V., Scharfy D., Anspach V., Bowman G., 2023. Agricultural biogas plants as a hub to foster circular economy and bioenergy: An assessment using substance and energy flow analysis. Resources, Conservation and Recycling, 190: 106770, doi: 10.1016/j.resconrec.2022.106770. Search in Google Scholar

Cardelli R., Giussani G., Marchini F., Saviozzi A., 2018. Short-term effects on soil of biogas digestate, biochar and their combinations. Soil Research, 56(6): 623-631, doi:10.1071/SR18017. Search in Google Scholar

Cavalli D., Corti M., Baronchelli D., Bechini L., Marino Gallina P.M., 2017. CO2 emissions and mineral nitrogen dynamics following application to soil of undigested liquid cattle manure and digestates. Geoderma, 308: 26-35, doi: 10.1016/j.geoderma.2017.08.027. Search in Google Scholar

Chase J.M., McGill B.J., McGlinn D.J., May F., Blowes S.A., Xiao X., Knight T.M., Purschke O., Gotelli N.J., 2018. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecology Letters, 21: 1737-1751, doi:10.1111/ele.13151. Search in Google Scholar

Chen X.D., Dunfield K.E., Fraser T.D., Wakelin S.A., Richardson A.E., Condron L.M., 2020. Soil biodiversity and biogeochemical function in managed ecosystems. Soil Research, 58: 1-20, doi: 10.1071/SR19067. Search in Google Scholar

Chu H., Lin X., Fujii T., Morimoto S., Yagi K., Hu J., et al., 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology & Biochemistry, 39: 2971-2976, doi:10.1016/j.soilbio.2007.05.031. Search in Google Scholar

Craswell E., Lefroy R., 2001. The role and function of organic matter in tropical soils. Nutrient Cycling in Agroecosystems, 61: 7-18, doi: 10.1023/A:1013656024633. Search in Google Scholar

Czekała W., Jasiński T., Grzelak M., Witaszek K., Dach J., 2022. Biogas plant operation: digestate as the valuable product. Energies, 15: 8275, doi: 10.3390/en15218275. Search in Google Scholar

Czekała W., Pilarski K., Dach J., Janczak D., 2012. Analiza możliwości zagospodarowania pofermentu z biogazowni. Technika Rolnicza Ogrodnicza Leśna, 4: 13-15. Search in Google Scholar

Decaëns T., Jiménez J.J., Gioia C., Measey G.J., Lavelle P., 2006. The values of soil animals for conservation biology. European Journal of Soil Biology, 42: S23-S38, doi:1016/j. ejsobi.2006.07.001. Search in Google Scholar

Delany-Crowe T., Marinova D., Fisher M., McGreevy M., Baum F., 2019. Australian policies on water management and climate change: are they supporting the sustainable development goals and improved health and well-being? Global Health, 15: 68, doi: 10.1186/s12992-019-0509-3. Search in Google Scholar

Delgado-Baquerizo M., Reich P.B., Trivedi C., Eldridge D.J., Abades S., Alfaro F.D., et al., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4: 210-220, doi: 10.1038/s41559-019-1084-y. Search in Google Scholar

Doran J.W., Zeiss M.R., 2000. Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology, 15: 3-11, doi:10.1016/S0929-1393(00)00067-6. Search in Google Scholar

Doyeni M.O., Barcauskaite K., Buneviciene K., Venslauskas K., Navickas K., Rubezius M., Baksinskaite A., Suproniene S., Tilvikiene V., 2023. Nitrogen flow in livestock waste system towards an efficient circular economy in agriculture. Waste Management & Research, 41(3): 701-712, doi: 10.1177/0734242X221123484. Search in Google Scholar

Estes L., Elsen P.R., Treuer T., Ahmed L., Caylor K., Chang J., Choi J.J., Ellis E.C., 2018. The spatial and temporal domains of modern ecology. Nature Ecology and Evolution, 2: 819-826, doi: 10.1038/s41559-018-0524-4. Search in Google Scholar

Garg R.N., Pathak H., Das D.K., Tomar R.K., 2005. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil. Environmental Monitoring and Assessment, 107: 1-9, doi: 10.1007/s10661-005-2021-x. Search in Google Scholar

Gielnik A., Pechaud Y., Huguenot D., Cébron A., Riom J.M., Guibaud G., Esposito G., van Hullebusch E.D., 2019. Effect of digestate application on microbial respiration and bacterial communities’ diversity during bioremediation of weathered petroleum hydrocarbons contaminated soils. Science of the Total Environment, 670: 271-281, doi: 10.1016/j. scitotenv.2019.03.176. Search in Google Scholar

Gonzales-Lopez J., Martinez Toledo M.V., Reina S., Salmeron V., 1991. Root exudates of maize on production of auxins, gibberellins, cytokinins, amino acid and vitamins by Azotobacter chroococcum chemically defined media and dialysed soil media. Toxicological and Environmental Chemistry, 33: 69-78, doi: 10.1080/02772249109357748. Search in Google Scholar

Greenberg I., Kaiser M., Gunina A., Ledesma P., Polifka S., Wiedner K., Mueller C.W., Glaser B., Ludwig B., 2019. Substitution of mineral fertilizers with biogas digestate plus biochar increases physically stabilized soil carbon but not crop biomass in a field trial. Science of the Total Environment, 680: 181-189, doi: 10.1016/j.scitotenv.2019.05.051. Search in Google Scholar

Guo Z., Han J., Li J., Xu Y., Wang X., 2019. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE, 14: e0211163, doi: 10.1371/JOURNAL.PONE.0211163. Search in Google Scholar

Hermans S.M., Lear G., Case B.S., Buckley H.L., 2023. The soil microbiome: An essential, but neglected, component of regenerative agroecosystems. iScience, 26(2): 106028, doi: 10.1016/j.isci.2023.106028. Search in Google Scholar

Insam H., Gomez-Brandon M., Ascher J., 2015. Manure-based biogas fermentation residuese Friend or foe of soil fertility? Soil Biology and Biochemistry, 84: 1-14, doi: 10.1016/j.soilbio.2015.02.006. Search in Google Scholar

Jandl G., Horn R., Schroeder R., Eckhardt K.U., Leinweber P., 2023. Influence of biogas digestates on the composition of soil organic matter. Journal of Energy and Power Technology, 5(1): 1-17, doi: 10.21926/jept.2301012. Search in Google Scholar

Jha D.K., Sharma G.D., Mishra R.R., 1992. Ecology of soil microflora and mycorrhizal symbionts in degraded forests at two altitudes. Biology and Fertility of Soils, 12: 272-278, doi: 10.1007/BF00336043. Search in Google Scholar

Johannes A., Matter A., Schulin R., Weisskopf P., Baveye P.C., Boivin P., 2017. Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? Geoderma, 302: 14-21, doi:10.1016/j.geoderma.2017.04.021. Search in Google Scholar

Karimi B., Sadet-Bourgeteau S., Cannavacciuolo M. et al., 2022. Impact of biogas digestates on soil microbiota in agriculture: a review. Environmental Chemistry Letters, 20: 3265-3288, doi: 10.1007/s10311-022-01451-8. Search in Google Scholar

Karlen D.L., Mausbach M.J., Doran J.W., Cline R.G., Harris R.F., Schuman G.E., 1997. Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal, 61: 4-10, doi: 10.2136/sssaj1997.03615 995006100010001x. Search in Google Scholar

Koch A.L., 2001. Oligotrophs versus copiotrophs. BioEssays, 23: 657-661, doi: 10.1002/bies.1091. Search in Google Scholar

Komisja Europejska, 2020. https://state-of-the-union.ec.europa.eu/leading-green-transition.pl (accessed 01.05.2023). Search in Google Scholar

Kozieł M., 2023. Factors determining the occurrence and number of bacteria of the genus Azotobacter in the soil environment. Polish Journal of Agronomy, doi: 10.26114/pja. iung.503.2023.52.02. Search in Google Scholar

Kowalczyk-Juśko A., Szymańska M., 2015. Poferment nawozem dla rolnictwa. Wyd. Fundacja na rzecz Rozwoju Polskiego Rolnictwa, Warszawa. Search in Google Scholar

Lal R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304: 1623-1627, doi: 10.1126/science.1097396. Search in Google Scholar

Li L., Xu M., Eyakub Ali M., Zhang W., Duan Y., Li D., 2018. Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment. PLoS ONE, 13: e0203812, doi: 10.1371/journal.pone.0203812. Search in Google Scholar

Logan M., Visvanathan C., 2019. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Management & Research, 37 (Suppl. S1): 27-39, doi: 10.1177/0734242X18816793. Search in Google Scholar

Lorenz K., Lal R., Preston C.M., Nierop K.G., 2007. Strengthening the soil organic carbon pool by increasing contribution from recalcitrant aliphatic bio (macro) molecules. Geoderma, 142: 1-10, doi: 10.1016/j.geoderma.2007.07.013. Search in Google Scholar

Luo L., Ma Y., Zhang S., Wei D., Zhu Y.G., 2009. Aninven-tory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90: 2524-2530. Search in Google Scholar

Makdi M., Tomcsik A., Orosz V., 2012. Digestate: A new nutrient source – Review. Biogas, 14: 295-312, doi: 10.5772/31355. Search in Google Scholar

Maron P.A, Sarr A., Kaisermann A., Lévêque J., Mathieu O., Guigue J., Karimi B., Bernard L., Dequiedt S., Terrat S., Chabbi A., Ranjard L., 2018. High microbial diversity promotes soil ecosystem functioning. Applied and Environmental Microbiology, 84: e02738-e2817. doi: 10.1128/AEM.02738-17. Search in Google Scholar

Martyniuk S., 2008. Znaczenie procesu biologicznego wiązania azotu atmosferycznego w rolnictwie ekologicznym. Journal of Research and Applications in Agricultural Engineering, 53: 9-14. Search in Google Scholar

Martyniuk S., Martyniuk M., 2003. Occurrence of Azotobacter spp., in some Polish soils. Polish Journal of Environmental Studies, 12: 371-374. Search in Google Scholar

Mercado-Blanco J., Abrantes I., Barra Caracciolo A., Bevivino A., Ciancio A., Grenni P., Hrynkiewicz K., Kredics L., Proença D.N., 2018. Belowground microbiota and the health of tree crops. Frontiers in Microbiology, 9: 1006, doi: 10.3389/fmicb.2018.01006. Search in Google Scholar

Ministerstwo Aktywów Państwowych. 2019. Krajowy planu na rzecz energii i klimatu na lata 2021-2030. Wersja 4.1 z dn. 18.12.2019, https://www.gov.pl/web/klimat/krajowy--plan-na-rzecz-energii-i-klimatu. Search in Google Scholar

Möller K., 2015. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agronomy for Sustainable Development, 35: 1021-1041, doi: 10.1007/s13593-015-0284-3. Search in Google Scholar

Nabel M., Schrey S.D., Poorter H., Koller R., Jablonowski A.D., 2017. Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass fields on marginal soils by increasing soil fertility. Biomass and Bioenergy, 107: 207-213, doi: 10.1016/j.biombioe.2017.10.009. Search in Google Scholar

Nannipieri P., Aschner J., Ceccherini M.T., Landi L., Pietramellara G., Renella G., Valori F., 2007. Microbial diversity and microbial activity in the rhizosphere. Ciencia del Suelo, 25: 89-97. Search in Google Scholar

Nielsen K., Roß Ch.L., Hoffmann M., Muskolus A., Ellmer F., Kautz T., 2020. The chemical composition of biogas digestates determines their effect on soil microbial activity. Agriculture, 10: 244, doi: 10.3390/agriculture10060244. Search in Google Scholar

Nilsson M., Griggs D., Visbec M., 2016. Policy: Map the interactions between Sustainable Development Goals. Nature, 534: 320-322, doi: 10.1038/534320a. Search in Google Scholar

Nkoa R., 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agronomy for Sustainable Development, 34: 473-492, doi: 10.1007/s13593-013-0196-z. Search in Google Scholar

Odlare M., Arthurson V., Pell M., Svensson K., Nehrenheim E., Abubaker J., 2011. Land application of organic waste – Effects on the soil ecosystem. Applied Energy, 88: 2210-2218, doi: 10.1016/j.apenergy.2010.12.043. Search in Google Scholar

Odlare M., Pell M., Svensson K., 2008. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Management, 28: 1246-1253, doi: 10.1016/j.wasman.2007.06.005. Search in Google Scholar

Parastesh F., Alikhani H.A., Etesami H., 2019. Vermicom-post enriched with phosphate–solubilizing bacteria provides plant with enough phosphorus in a sequential cropping under calcareous soil conditions. Journal of Cleaner Production, 221: 27-37, doi: 10.1016/j.jclepro.2019.02.234. Search in Google Scholar

Paśmionka I., 2017. Mikrobiologiczne przemiany azotu glebowego. Kosmos. Problemy Nauk Biologicznych, 66(2): 185-192. Search in Google Scholar

Pastorelli R., Valboa G., Lagomarsino A., Fabiani A., Simoncini S., Zaghi M., Vignozzi N., 2021. Recycling biogas digestate from energy crops: Effects on soil properties and crop productivity. Applied Sciences, 11: 750, doi:10.3390/app11020750. Search in Google Scholar

Paz-Ferreiro J., Fu S., 2016. Biological indices for soil quality evaluation: Perspectives and limitations. Land Degradation & Development, 27: 14-25, doi: 10.1002/ldr.2262. Search in Google Scholar

Reeves D.W., 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil and Tillage Research, 43: 131-167, doi:10.1016/S0167-1987(97)00038-X. Search in Google Scholar

Ren A.T., Abbott L.K., Chen Y., et al., 2020. Nutrient recovery from anaerobic digestion of food waste: impacts of digestate on plant growth and rhizosphere bacterial community composition and potential function in ryegrass. Biology and Fertility of Soils, 56: 973-989, doi: 10.1007/s00374-020-01477-6. Search in Google Scholar

Report E.E.A., 2012. Climate change, impacts and vulnerability in Europe 2012. https://op.europa.eu/en/publication-detail/-/publication/c42b2390-451f-475c-b0a4-7ff14aeaee45/language-en (accessed 01.05.2023). Search in Google Scholar

Scarlat N., Dallemand J.F., Fahl F., 2018. Biogas: Developments and perspectives in Europe. Renewable Energy, 129: 457-472, doi: 10.1016/j.renene.2018.03.006. Search in Google Scholar

Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., Kögel-Knabner I., Lehmann J., Mannin, D.A.C., 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478: 49-56, doi: 10.1038/nature10386. Search in Google Scholar

Siebielec G., Siebielec S., Lipski D., 2018. Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity. Journal of Cleaner Production, 18: 372-379, doi: 10.1016/j.jclepro.2018.03.245. Search in Google Scholar

Siebielec S., Siebielec G., Klimkowicz-Pawlas A., Gałązka A., Grządziel J., Stuczyński T., 2020. Impact of water stress on microbial community and activity in sandy and loamy soils. Agronomy, 10(9): 1429, doi: 10.3390/agronomy10091429. Search in Google Scholar

Simon T., Kunzová E., Friedlová M., 2015. The effect of digestate, cattle slurry and mineral fertilization on the winter wheat yield and soil quality parameters. Plant Soil Environment, 61: 522-527, doi: 10.17221/530/2015-PSE. Search in Google Scholar

Singh J.S., Gupta V.K., 2018. Soil microbial biomass: A key soil driver in management of ecosystem functioning. Science of the Total Environment, 634: 497-500, doi: 10.1016/j. scitotenv.2018.03.373. Search in Google Scholar

Six J., Bossuyt H., Degryze S., Denef K., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79: 7-31, doi: 10.1016/j.still.2004.03.008. Search in Google Scholar

Stavi I., Bel G., Zaady E., 2016. Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review. Agronomy for sustainable development, 36: 1-12, doi: 10.1007/s13593-016-0368-8. Search in Google Scholar

Stefaniuk M., Bartminski P., Różyło K., Dębicki R., Oleszczuk P., 2015. Ecotoxicological assessment of residues from different biogas production plants used as fertiliser for soil. Journal of Hazardous Materials, 298: 195-202, doi: 10.1016/j.jhazmat.2015.05.026. Search in Google Scholar

Strock J.S., 2008. Ammonification. pp. 162-165. In: Encyclopedia of Ecology, Elsevier Inc., doi: 10.1016/B978-008045405-4.00256-1. Search in Google Scholar

Suproniene S., Doyeni M.O., Viti C., Tilvikiene V., Pini F., 2022. Characterization of the soil prokaryotic community with respect to time and fertilization with animal waste– based digestate in a humid continental climate. Frontiers in Environmental Sciences, 10: 852241, doi: 10.3389/fenvs.2022.852241. Search in Google Scholar

Tampio E., Marttinen S., Rintala J., 2016a. Liquid fertilizer products from anaerobic digestion of food waste: mass, nutrient and energy balance of four digestate liquid treatment systems. Journal of Cleaner Production, 125: 22-32, doi: 10.1016/j.jclepro.2016.03.127. Search in Google Scholar

Tampio E., Salo T., Rintala J., 2016b. Agronomic characteristics of five different urban waste digestates. Journal of environmental management, 169: 293-302, doi: 10.1016/j. jenvman.2016.01.001. Search in Google Scholar

Tanveer M., Anjum S.A., Hussain S., Cerdà A., Ashraf U., 2017. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production. Environmental Science and Pollution Research, 24(8): 6973-6988, doi: 10.1007/s11356-017-8371-4. Search in Google Scholar

Thiele-Bruhn S., Bloem J., de Vries F.T., Kalbitz K., Wagg C., 2012. Linking soil biodiversity and agricultural soil management. Current Opinion in Environmental Sustainability, 4: 523-528, doi: 10.1016/j.cosust.2012.06.004. Search in Google Scholar

Tibbett M., Fraser T.D., Duddigan S., 2020. Identifying potential threats to soil biodiversity. PeerJ, 8: e9271, doi: 10.7717/peerj.9271. Search in Google Scholar

Westphal A., Kücke M., Heuer H., 2016. Soil amendment with digestate from bio- energy fermenters for mitigating damage to Beta vulgaris subspp. by Heterodera schachtii. Applied Soil Ecology, 99: 129-136, doi:10.1016/j.ap-soil.2015.11.019. Search in Google Scholar

Widawati S., Latupapua S.H.J.D., Sugiharto A., 2005. Bio-diversity of soil microbes from rhizosphere at Wamena Biological Garden (WBiG), Jayawijaya, Papua. Bio Diveritas, 6: 6-11, doi: 10.13057/biodiv/d060102. Search in Google Scholar

Yan M., Tian H., Song S., Tan H.T.W., Lee J.T.E., Zhang J., Sharma P., Tiong Y.W., Tong Y.W., 2023. Effects of digestate-encapsulated biochar on plant growth, soil microbiome and nitrogen leaching. Journal of Environmental Management, 334: 117481, doi: 10.1016/j.jenvman.2023.117481. Search in Google Scholar

Young I.M., Ritz K., 2000. Tillage, habitat space and function of soil microbes. Soil and Tillage Research, 53(3): 201-213, doi: 10.1016/S0167-1987(99)00106-3. Search in Google Scholar

Yu L.Y., Huang H.B., Wang X.H., Li S., Feng N.X., Zhao H.M., 2019. Novel phosphate-solubilising bacteria isolated from sewage sludge and the mechanism of phosphate solubilisation. Science of the Total Environment, 658: 474-484, doi: 10.1016/j.scitotenv.2018.12.166. Search in Google Scholar

Zhang T., Hu F., Ma L., 2019. Phosphate-solubilizing bacteria from safflower rhizosphere and their effect on seedling growth. Open Life Science, 14: 246-254, doi: 10.1515/biol-2019-0028. Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
1 volte all'anno
Argomenti della rivista:
Scienze biologiche, Botanica, Ecologia