Accesso libero

New results toward the classification of biharmonic submanifolds in 𝕊n

| 17 mag 2013
Analele ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria Matematică's Cover Image
Analele ştiinţifice ale Universităţii "Ovidius" Constanţa. Seria Matematică
Proceedings of the 10th International Workshop on Differential Geometry and its Applications
INFORMAZIONI SU QUESTO ARTICOLO

Cita

[1] A. Balmuş, S. Montaldo, C. Oniciuc. Biharmonic PNMC submanifolds in spheres, to appear in Ark. Mat.Search in Google Scholar

[2] A. Balmuş, S. Montaldo, C. Oniciuc. Properties of biharmonic submani- folds in spheres. J. Geom. Symmetry Phys. 17 (2010), 87 102.Search in Google Scholar

[3] A. Balmuş, S. Montaldo, C. Oniciuc. Biharmonic hypersurfaces in 4- dimensional space forms. Math. Nachr. 283 (2010), 1696-1705.Search in Google Scholar

[4] A. Balmuş, S. Montaldo, C. Oniciuc. Classification results and new exam- ples of proper biharmonic submanifolds in spheres. Note Mat. 28 (2008), suppl. 1, 49-61.Search in Google Scholar

[5] A. Balmuş, S. Montaldo, C. Oniciuc. Classification results for biharmonic submanifolds in spheres. Israel J. Math. 168 (2008), 201-220.Search in Google Scholar

[6] A. Balmuş, C. Oniciuc. Biharmonic submanifolds with parallel mean cur- vature vector field in spheres. J. Math. Anal. Appi. 386 (2012), 619-630.Search in Google Scholar

[7] A. Balmuş, C. Oniciuc. Biharmonic surfaces of §4. Kyushu .J. Math. 63 (2009), 339-345.10.2206/kyushujm.63.339Search in Google Scholar

[8] A. Besse. Einstein manifolds. Springer-Verlag, Berlin, 1987.10.1007/978-3-540-74311-8Search in Google Scholar

[9] R. Caddeo, S. Montaldo, C. Oniciuc. Biharmonic submanifolds in spheres. Israel J. Math. 130 (2002), 109-123.10.1007/BF02764073Search in Google Scholar

[10] R. Caddeo, S. Montaldo, C. Oniciuc. Biharmonic submanifolds of §3. Internat. J. Math. 12 (2001), 807-876.Search in Google Scholar

[11] S. Chang. A closed hypersurface with constant scalar and mean curvature in §4 is isoparametric. Comm. Anal. Geom 1 (1993), 71-100.10.4310/CAG.1993.v1.n1.a4Search in Google Scholar

[12] B-Y. Chen. Pseudo-Riemannian geometry, invariants and applications, World Scientific, Hackensack, NJ, 2011.10.1142/8003Search in Google Scholar

[13] B-Y. Chen. Complete| classification of parallel spatial surfaces in pseudo- Riemannian space forms with arbitrary index and dimension. J. Geom. Phys. 00 (2010), 200-280.10.1016/j.geomphys.2009.09.012Search in Google Scholar

[14] B-Y. Chen. A report on submanifolds of finite type. Soochow J. Math. 22 (1990), 117-337.Search in Google Scholar

[15] B-Y. Chen. Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17 (1991), 109-188.Search in Google Scholar

[16] B-Y. Chen. Total Mean Curvature and Submanifolds of Finite Type. Se- ries in Pure Mathematics, 1. World Scientific Publishing Co., Singapore, 1984.10.1142/0065Search in Google Scholar

[17] J.H. Chen. Compact 2-harmonic hypersurfaces in §n+1(l). Acta Math. Sinica 30 (1993), 49-50.Search in Google Scholar

[18] Q.-M. Cheng. Compact hypersurfaces in a unit sphere with infinite fun- damental group. Pacific .1. Math. 212 (2003), 341-347.10.2140/pjm.2003.212.49Search in Google Scholar

[19] S.S. Chern, M. doCarmo, S. Kobayashi. Minimal submanifolds of a sphere with second fundamental form of constant length. 1970 Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, 111., 1908), 59-75 Springer, New York.10.1007/978-3-642-48272-4_2Search in Google Scholar

[20] F. Defever. Hypersurfaces of E4 with harmonic mean curvature vector. Math. Nachr. 190 (1998), 01-09.Search in Google Scholar

[21] I. Dimitric. Submanifolds of Em with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sinica 20 (1992), 53-05.Search in Google Scholar

[22] J. Erbacher. Reduction of the codimension of an isometric immersion. J. Differ. Geom. 5 (1971), 333-340.10.4310/jdg/1214429997Search in Google Scholar

[23] D. Fetcu, C. Oniciuc. Biharmonic integral C-parallel submanifolds in 7- dimensional Sasakian space forms, Tohoku Math. J., to appear. Search in Google Scholar

[24] T. Hasanis, T. Vlachos. Hypersurfaces in E4 with harmonic mean curva- ture vector field. Math. Nachr. 172 (1995), 145-169.Search in Google Scholar

[25] T. Ichiyama, .1.1. Inoguchi, H. Urakawa. Bi-harmonic maps and bi-Yang- Mills fields. Note Mat. 28 suppl. n. 1 (2008), 233-275.Search in Google Scholar

[26] G.Y. Jiang. 2-harmonic isometric immersions between Riemannian man- ifolds. Chinese Ann. Math. Ser. A 7 (1986), 130-144.Search in Google Scholar

[27] H.B. Lawson. Local rigidity theorems for minimal hypersurfaces. Ann. of Math. (2) 89 (1969), 187-197.10.2307/1970816Search in Google Scholar

[28] P. Li. Harmonic functions and applications to complete manifolds. XIV Escola de Geometria Diferencial (IMPA), Rio de Janeiro, 2006.Search in Google Scholar

[29] N. Nakauchi, H. Urakawa. Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature. Ann. Glob. Anal. Geom. 40 (2011), 125-131.Search in Google Scholar

[30] N. Nakauchi, H. Urakawa. Biharmonic submanifolds in a Riemannian manifold with non-positive curvature. Results Math., to appear.Search in Google Scholar

[31] C. Oniciuc. Tangency and Harmonicity Properties. PhD The- sis, Geometry Balkan Press 2003, http://www.mathem.pub.ro/-dgds/mono/dgdsmono.htmSearch in Google Scholar

[32] C. Oniciuc. Biharmonic maps between Riemannian manifolds. An. Stiint. Univ. ALL Cuza Iasi Mat (N.S.) 48 (2002), 237-248.Search in Google Scholar

[33] T[ Sasahara. Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors. Pubi. Math. Debrecen 67 (2005), 285-303.10.1515/dema-2005-0121Search in Google Scholar

[34] Y.-L. Ou, L. Tang. On the generalized Chen’s conjecture on biharmonic submanifolds. Michigan Math. J., to appear.Search in Google Scholar

[35] C. Peng, C. Terng. Minimal hypersurfaces of spheres with constant scalar curvature. Seminar on minimal submanifolds, 177-198, Ann. of Math. Stud., 103, Princeton Univ. Press, Princeton, NJ, 1983.10.1515/9781400881437-010Search in Google Scholar

[36] W. Santos. Submanifolds with parallel mean curvature vector in spheres. Tohoku Math. J. 46 (1994), 403-415.10.2748/tmj/1178225720Search in Google Scholar

[37] J. Simons. Minimal varieties in Riemannian manifolds. Ann. of Math. 88 (1968), 62-105.[38] X.F. Wang, L. Wu. Proper biharmonic submanifolds in a sphere. Acta Math. Sin. (Engl. Ser.) 28 (2012), 205-218.10.1007/s10114-012-9018-5Search in Google Scholar

[39] S.-T. Yau. Harmonic functions on complete Riemannian manifolds. Com- mun. Pure Appi. Math. 28 (1975), 201-228.10.1002/cpa.3160280203Search in Google Scholar

[40] S.-T. Yau. Submanifolds with constant mean curvature I. Amer. J. Math. 90 (1974), 34G-36G.Search in Google Scholar

[41] W. Zhang. New examples of biharmonic submanifolds in CPn and S2n+1. An. Stiint. Univ. Al.I. Cuza Iasi Mat (N.S.) 57 (2011), 207-218. 10.2478/v10157-010-0046-0Search in Google Scholar

eISSN:
1844-0835
Lingua:
Inglese
Frequenza di pubblicazione:
Volume Open
Argomenti della rivista:
Mathematics, General Mathematics