Accesso libero

Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties



Gu Y. W., Yong M. S., Tay B. Y., Lim C. S.: Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Materials Science and Engineering, vol. C 29 (2009), 1515-1520.Search in Google Scholar

Froimson M. I., Garino J., Machenaud A., Vidalain J. P.: Minimum 10-year results of a tapered, titanium, hydroxyapatite-coated hip stem. The Journal of Arthroplasty, 22, no.1 (2007), 1-7.10.1016/j.arth.2006.03.003Search in Google Scholar

Spoerke E. D., Murray N. G., Li H., Brinson L. C., Dunand D. C., Stupp S. I.: A bioactive titanium foam scaffold for bone repair. Acta Biomaterialia, 1 (2005), 523-533.Search in Google Scholar

Karageorgiou V., Kaplan D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26 (2005), 5474-5491.Search in Google Scholar

Li J. P., Habibovic P., Doel M., Wilson C. E., Wijn J. R., Blitterswijk C. A., Groot K.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 28 (2007), 2810-2820.Search in Google Scholar

Alvarez K., Hyun S. K., Nakano T., Umakoshi Y., Nakajima H.: In vivo osteocompatibility of Lotus-type porous nickel-free stainless steel in rats. Mater. Sci. Eng. C, 29 (2009), 1182-1190.Search in Google Scholar

Galante J., Rostoker W.: Fiber metal composities in the fixation of skeletal prosthesis. J. Biomed. Mater. Res., 4 (1973), 43-61.Search in Google Scholar

Galante J., Rostoker W., Lueck R.: Sintered fibre metal composites as a basis for attachment of implants to bone J. Bone. J Surg., 53, A(1) (1971), 101-114.10.2106/00004623-197153010-00009Search in Google Scholar

Davis N. G., Teisen J., Schuh C., Dunand D. C.: Solid-state foaming of titanium by superplastic expansion of argon-filled pores. J. Mater. Res., 16 (2001) 1508-1539.Search in Google Scholar

Li J. P., Li S. H., Van Blitterswijk C. A., De Groot K.: A novel porous Ti6Al4V: characterization and cell attachment. J. Biomed. Mater. Res., 73A (2005), 223-233.10.1002/jbm.a.30278Search in Google Scholar

Miyao R., Omori M., Watari F., Yokoyama A., Matsumo H., Hirai T., Kawasaki T.: Fabrication of functionally graded implants by spark plasma sintering and their properties. J. Japan Soc. Powder Metall., 47 (2000), 1239-1242.Search in Google Scholar

Groza J. R., Zavaliangos A.: Sintering activation by external electrical field. Mater Sci. Eng. A., 287 (2000), 171-177.Search in Google Scholar

Charriere E., Lemaitre J., Zysset Ph.: Hydroxyapatite cement scaffolds with controlled macroporosity: fabrication protocol and mechanical properties. Biomaterials, 24 (2003), 809-817.Search in Google Scholar

Borisov A. A., De Luca L., Merzhanov A.: Self-propagating high-temperature synthesis. Combustion Science & Technology Book Series, vol.5, New York (2002).Search in Google Scholar

Lopez-Heredia M. A., Sohier J., Gaillard C., Quillard S., Dorget M., Layrolle P.: Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials, 20 (2008), 2608-2615.Search in Google Scholar

Li J. P., Wijn J. R., Blitterswijk C. A., Groot K.: Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment. Biomaterials, 27 (2006), 1223-1235.Search in Google Scholar

Ravelingien M., Hervent A-S., Mullens S., Luyten J., Vervaet Ch., Remon J. P.: Influence of surface topography and pore architecture of alkali-treated titanium on in vitro apatite deposition. Applied Surface Science, 256 (2010), 3693-3697.Search in Google Scholar

Mullen L., Stamp R. C., Brooks W. K., Jones E., Sutcliffe C. J.: Selective laser melting: A regular unit approach for the manufacture of porous titanium, bone ingrowth constructs, suitable for orthopaedic applications. J. Biomed. Mater. Res. B 2009 in press.10.1002/jbm.b.31219Search in Google Scholar

Lee J.-H., Kim H-E., Koh Y-H.: Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer. Materials Letters 63 (2009), 1995-1998.Search in Google Scholar

Vasconcellos L. M., Oliveira M. V., Graca M. L., Vasconcellos L. G. O., Carvalho Y. R., Cairo C. A. A.: Porous titanium scaffolds produced by powder metallurgy for biomedical applications. Mater Res., 11, (3), (2008), 275-280.Search in Google Scholar

Shen H., Oppenheimer S. M., Dunand D. C., Brinson L. C.: Numerical Modeling of Pore Size and Distribution in Foamed Titanium. Mechanics of Mat. 38, (8-10) (2006), 933-944.10.1016/j.mechmat.2005.06.027Search in Google Scholar

Bram M., Schiefer H., Bogdanski D., Koller M., Buchkremere H. P., Stover D.: Implant surgery: How bone bonds to PM titanium. Metal Powder R., (2006), 26-31.10.1016/S0026-0657(06)70603-8Search in Google Scholar

St-Pierre J-P., Gauthier M., Lefebvre L-P., Tabrizian M.: Three-dimensional growth of differentiating MC3T3-E1. Biomaterials, 26 (2005), 7319-7328.Search in Google Scholar

Cachinho S. C. P., Correia R. N.: Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour. J. Mater. Sci: Mater. Med., 19 (2008) 451-457.Search in Google Scholar

Liao S., Chan C. K., Ramakrishna S.: Stem cells and biomimetic materials strategies for tissue engineering. Mater. Sci. and Eng., C 28 (2008) 1189-1202.Search in Google Scholar

Zhang E., Zou Ch.: Porous titanium and silicon-substituted hydroxyapatite biomodification prepared by a biomimetic process: Charakterization and in vivo evaluation. Acta Biomaterialia, 5 (2009), 1732-1741.Search in Google Scholar

Hayakawa T., Takahashi K., Okada H., Yoshinari M., Hara H., Mochizuki Ch., Yamamoto H., Sato M.: Effect of thin carbonate-containing apatite (CA) coating of titanium fiber mesh on trabecular bone response. J. Mater. Sci: Mater. Med., 19 (2008), 2087-2096.Search in Google Scholar

Fujibayashi S., Neo M., Kim H-M., Kokubo T., Nakamura T.: Osteoinduction of porous bioactive titanium metal. Biomaterials, 25 (2004) 443-450.Search in Google Scholar

Muller U., Imwinkelried T., Horst M., Sievers M., Graf-Hausner U.: Do human osteoblasts grow into open-porous titanium? European Cells and Mat., 11 (2006) 8-15.Search in Google Scholar

Zhang Q., Leng Y., Xin R.: A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium. Biomaterials, 26 (2005), 2857-2865.Search in Google Scholar

Shen H., Li H., Brinson L. C.: Effect of microstructural configurations on the mechanical responses of porous titanium: A numerical design of experiment analysis for orthopaedic applications. Mechanics and Materials, 40 (2008), 708-720.Search in Google Scholar

Li Ch., Zhu Z.: Dynamic Young's modulus of open-porosity titanium measured by the electromagnetic acoustic resonance method. J. Porous Mater., 13 (2006) 21-26.Search in Google Scholar

Ryan G. E., Pandit A. S., Apatsidis D. P.: Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials, 29 (2008), 3625-3635.Search in Google Scholar

Zhao J., Lu X., Weng J.: Macroporous Ti-based composite scaffold prepared by polymer impregnating method with calcium phosphate coatings. Mater. Lett., 62 (2008), 2921-2924.Search in Google Scholar

Chen X-B., Li Y-C., Hodgson P. D., Wen C.: The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Acta Biomaterialia, 5 (2009), 2290-2302.Search in Google Scholar

Ahmad S., Muhamad N., Muchtar A., Sahari J., Jamaludin K. R, Ibrahim M. H., Mohamad Nor N. H., Murtadhahadi I.: Producing of titanium foam using titanium alloy (Al3Ti) by slurry method. Brunei Int. Conf. of Eng. And Techn. (BICET) 3-4.11.2008 Brunei (2008).Search in Google Scholar

Esen Z., Bor S.: Processing of titanium foams using magnesium spacer particles. Scripta Materialia, 56 (2007), 341-344.Search in Google Scholar

Kotan G., Bor A. S.: Production and Characterization of High Porosity Ti-6A-4V Foam by Space Holder Technique in Powder Metallurgy. Turkish J. Eng. Env. Sci. 31 (2007), 149-156.Search in Google Scholar

Xiong J., Li Y., Wang X., Hodgson P., Wen C.: Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications. Acta Biomaterialia, 4 (2008), 1963-1968.Search in Google Scholar

Lu Y-P., Li M-S., Li S-T., Wang Z-G., Zhu R-F.: Plasma-sprayed hydroxyapatite + titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials, 25 (2004), 4393-4403.Search in Google Scholar

Liu X., Chu P. K., Ding Ch.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering, 47 (2004), 49-121.Search in Google Scholar

Wen C. E., Xu W., Hu W. Y., Hodgson P. D.: Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomaterialia, 3 (2007), 403-410.Search in Google Scholar

Mayr H., Ordung M., Ziegler G.: Development of thin electrophoretically deposited hydroxyapatite layers on Ti6Al4V hip prosthesis. J. Mater Sci., 41 (2006, 8138-8143.10.1007/s10853-006-0487-8Search in Google Scholar

Wang C. X., Wang M., Zhou X.: Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedence spectroscopy study. Biomaterials, 24 (18) (2003), 3069-3077.10.1016/S0142-9612(03)00154-6Search in Google Scholar

Sobieszczyk S.: Hydroxyapatite coatings on porous Ti and Ti alloys. Advances in Mater. Sci., 10 (1) (2010) 19-28.Search in Google Scholar

Schmidt C., Kaspar D., Sarkar M. R., Claes L. E., Ignatius A. A.: A scanning electron microscopy study of human osteoblast morphology on five orthopaedic metals. J. Biomed. Mater. Res. (Appl. Biomaterials), 63 (2002), 252-261.Search in Google Scholar

Annaz B., Hing K. A., Kayser M., Buckland T., Di Silvo L.: Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. J. of Microscopy, 215 (2004), 100-110.Search in Google Scholar

Sun J., Han Y., Cui K.: Microstructure and apatite-forming ability of the MAO-treated porous titanium. Surface & Coatings Technology, 202 (2008) 4248-4256.Search in Google Scholar

Lu Y-P., Song Y-Z., Zhu R-F., Li M-S., Lei T-Q.: Factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment. Applied Surf. Sci., 206 (2003), 345-354.Search in Google Scholar

Feng B., Chu X., Chen J., Wang J., Lu X., Weng J.: Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Materials (2009) published on-line: in Google Scholar

Jones J. R.: New trends in bioactive scaffolds: The importance of nanostructure. J European Cer. Soc., 29 (2009), 1275-1281.10.1016/j.jeurceramsoc.2008.08.003Search in Google Scholar

Sridhar T. M., Eliaz N., Mudali U. K., Ray B.: Electrophoretic deposition of hydroxyapatite coatings and corrosion aspects of metallic implants. Corr. Rev., 20(4-5) (2002), 255-293.10.1515/CORRREV.2002.20.4-5.255Search in Google Scholar

Sobieszczyk S.: Surface modifications of Ti and Ti alloys. Advances in Materials Science, 10(1) (2010) 29-42.Search in Google Scholar

Chen X. V., Nouri A., Li Y. C., Lin J. G., Hodgson P. D., Wen C. E.: Effect of surface roughness of Ti, Zr and TiZr on apatite precipitation from simulated body fluid. Biotechnol Bioeng, 101 (2008), 378-387.Search in Google Scholar

Chen X. B., Li Y. C., Hodgson P. D., Wen C. E.: Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from different simulated body fluids. Mater. Sci. Eng., C29 (2009), 165-171.10.1016/j.msec.2008.06.004Search in Google Scholar

Wang X. J., Li Y. C., Lin J. G., Hodgson P. D., Wen C. E.: Apatite-inducing ability of titanium oxide layer on titanium surface: the effect of surface energy. J. Mater. Res., 23 (2008), 1682-1688.Search in Google Scholar

Gibson L. J.: Biomechanics of cellular solids. J Biomechanics, 38 (3) (2005) 377-399.Search in Google Scholar

Zhao C. Y., Zhu X. D., Yuan T., Fan H. S., Zhang X. D.: Fabrication of biomimetic apatite coating on porous titanium and their osteointegration in femurs of dogs. Mater. Sci. and Eng., C 30 (2010), 98-104.Search in Google Scholar

Wen C. E., Yamada Y., Shimojima K., Chino Y., Asahina T., Mabuchi M.: Processing and mechanical properties of autogenous titanium implant materials. J Mater. Sci.: Mater in Medicine, vol.13(4) (2002), 397-401.10.1023/A:1014344819558Search in Google Scholar

Oh I-H., Nomura N., Masahashi N., Hanada S.: Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Materialia, 49 (12) (2003), 1197-1202.10.1016/j.scriptamat.2003.08.018Search in Google Scholar

Niemeyer T. C., Grandini C. R., Pinto L. M. C., Angelo A. C. D., Schneider S. G.: Corrosion behaviour of Ti-13Nb-13Zr alloy used as a biomaterial. J. Alloys and Comp., 476 (2009), 172-175.Search in Google Scholar

Lacroix D., Chateau A., Ginebra M-P., Planell J. A.: Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials, 27 (2006), 5326-5334.Search in Google Scholar

Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials