Accesso libero

Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties

INFORMAZIONI SU QUESTO ARTICOLO

Cita

Gu Y. W., Yong M. S., Tay B. Y., Lim C. S.: Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Materials Science and Engineering, vol. C 29 (2009), 1515-1520.Search in Google Scholar

Froimson M. I., Garino J., Machenaud A., Vidalain J. P.: Minimum 10-year results of a tapered, titanium, hydroxyapatite-coated hip stem. The Journal of Arthroplasty, 22, no.1 (2007), 1-7.10.1016/j.arth.2006.03.003Search in Google Scholar

Spoerke E. D., Murray N. G., Li H., Brinson L. C., Dunand D. C., Stupp S. I.: A bioactive titanium foam scaffold for bone repair. Acta Biomaterialia, 1 (2005), 523-533.Search in Google Scholar

Karageorgiou V., Kaplan D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26 (2005), 5474-5491.Search in Google Scholar

Li J. P., Habibovic P., Doel M., Wilson C. E., Wijn J. R., Blitterswijk C. A., Groot K.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 28 (2007), 2810-2820.Search in Google Scholar

Alvarez K., Hyun S. K., Nakano T., Umakoshi Y., Nakajima H.: In vivo osteocompatibility of Lotus-type porous nickel-free stainless steel in rats. Mater. Sci. Eng. C, 29 (2009), 1182-1190.Search in Google Scholar

Galante J., Rostoker W.: Fiber metal composities in the fixation of skeletal prosthesis. J. Biomed. Mater. Res., 4 (1973), 43-61.Search in Google Scholar

Galante J., Rostoker W., Lueck R.: Sintered fibre metal composites as a basis for attachment of implants to bone J. Bone. J Surg., 53, A(1) (1971), 101-114.10.2106/00004623-197153010-00009Search in Google Scholar

Davis N. G., Teisen J., Schuh C., Dunand D. C.: Solid-state foaming of titanium by superplastic expansion of argon-filled pores. J. Mater. Res., 16 (2001) 1508-1539.Search in Google Scholar

Li J. P., Li S. H., Van Blitterswijk C. A., De Groot K.: A novel porous Ti6Al4V: characterization and cell attachment. J. Biomed. Mater. Res., 73A (2005), 223-233.10.1002/jbm.a.30278Search in Google Scholar

Miyao R., Omori M., Watari F., Yokoyama A., Matsumo H., Hirai T., Kawasaki T.: Fabrication of functionally graded implants by spark plasma sintering and their properties. J. Japan Soc. Powder Metall., 47 (2000), 1239-1242.Search in Google Scholar

Groza J. R., Zavaliangos A.: Sintering activation by external electrical field. Mater Sci. Eng. A., 287 (2000), 171-177.Search in Google Scholar

Charriere E., Lemaitre J., Zysset Ph.: Hydroxyapatite cement scaffolds with controlled macroporosity: fabrication protocol and mechanical properties. Biomaterials, 24 (2003), 809-817.Search in Google Scholar

Borisov A. A., De Luca L., Merzhanov A.: Self-propagating high-temperature synthesis. Combustion Science & Technology Book Series, vol.5, New York (2002).Search in Google Scholar

Lopez-Heredia M. A., Sohier J., Gaillard C., Quillard S., Dorget M., Layrolle P.: Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials, 20 (2008), 2608-2615.Search in Google Scholar

Li J. P., Wijn J. R., Blitterswijk C. A., Groot K.: Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment. Biomaterials, 27 (2006), 1223-1235.Search in Google Scholar

Ravelingien M., Hervent A-S., Mullens S., Luyten J., Vervaet Ch., Remon J. P.: Influence of surface topography and pore architecture of alkali-treated titanium on in vitro apatite deposition. Applied Surface Science, 256 (2010), 3693-3697.Search in Google Scholar

Mullen L., Stamp R. C., Brooks W. K., Jones E., Sutcliffe C. J.: Selective laser melting: A regular unit approach for the manufacture of porous titanium, bone ingrowth constructs, suitable for orthopaedic applications. J. Biomed. Mater. Res. B 2009 in press.10.1002/jbm.b.31219Search in Google Scholar

Lee J.-H., Kim H-E., Koh Y-H.: Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer. Materials Letters 63 (2009), 1995-1998.Search in Google Scholar

Vasconcellos L. M., Oliveira M. V., Graca M. L., Vasconcellos L. G. O., Carvalho Y. R., Cairo C. A. A.: Porous titanium scaffolds produced by powder metallurgy for biomedical applications. Mater Res., 11, (3), (2008), 275-280.Search in Google Scholar

Shen H., Oppenheimer S. M., Dunand D. C., Brinson L. C.: Numerical Modeling of Pore Size and Distribution in Foamed Titanium. Mechanics of Mat. 38, (8-10) (2006), 933-944.10.1016/j.mechmat.2005.06.027Search in Google Scholar

Bram M., Schiefer H., Bogdanski D., Koller M., Buchkremere H. P., Stover D.: Implant surgery: How bone bonds to PM titanium. Metal Powder R., (2006), 26-31.10.1016/S0026-0657(06)70603-8Search in Google Scholar

St-Pierre J-P., Gauthier M., Lefebvre L-P., Tabrizian M.: Three-dimensional growth of differentiating MC3T3-E1. Biomaterials, 26 (2005), 7319-7328.Search in Google Scholar

Cachinho S. C. P., Correia R. N.: Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour. J. Mater. Sci: Mater. Med., 19 (2008) 451-457.Search in Google Scholar

Liao S., Chan C. K., Ramakrishna S.: Stem cells and biomimetic materials strategies for tissue engineering. Mater. Sci. and Eng., C 28 (2008) 1189-1202.Search in Google Scholar

Zhang E., Zou Ch.: Porous titanium and silicon-substituted hydroxyapatite biomodification prepared by a biomimetic process: Charakterization and in vivo evaluation. Acta Biomaterialia, 5 (2009), 1732-1741.Search in Google Scholar

Hayakawa T., Takahashi K., Okada H., Yoshinari M., Hara H., Mochizuki Ch., Yamamoto H., Sato M.: Effect of thin carbonate-containing apatite (CA) coating of titanium fiber mesh on trabecular bone response. J. Mater. Sci: Mater. Med., 19 (2008), 2087-2096.Search in Google Scholar

Fujibayashi S., Neo M., Kim H-M., Kokubo T., Nakamura T.: Osteoinduction of porous bioactive titanium metal. Biomaterials, 25 (2004) 443-450.Search in Google Scholar

Muller U., Imwinkelried T., Horst M., Sievers M., Graf-Hausner U.: Do human osteoblasts grow into open-porous titanium? European Cells and Mat., 11 (2006) 8-15.Search in Google Scholar

Zhang Q., Leng Y., Xin R.: A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium. Biomaterials, 26 (2005), 2857-2865.Search in Google Scholar

Shen H., Li H., Brinson L. C.: Effect of microstructural configurations on the mechanical responses of porous titanium: A numerical design of experiment analysis for orthopaedic applications. Mechanics and Materials, 40 (2008), 708-720.Search in Google Scholar

Li Ch., Zhu Z.: Dynamic Young's modulus of open-porosity titanium measured by the electromagnetic acoustic resonance method. J. Porous Mater., 13 (2006) 21-26.Search in Google Scholar

Ryan G. E., Pandit A. S., Apatsidis D. P.: Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials, 29 (2008), 3625-3635.Search in Google Scholar

Zhao J., Lu X., Weng J.: Macroporous Ti-based composite scaffold prepared by polymer impregnating method with calcium phosphate coatings. Mater. Lett., 62 (2008), 2921-2924.Search in Google Scholar

Chen X-B., Li Y-C., Hodgson P. D., Wen C.: The importance of particle size in porous titanium and nonporous counterparts for surface energy and its impact on apatite formation. Acta Biomaterialia, 5 (2009), 2290-2302.Search in Google Scholar

Ahmad S., Muhamad N., Muchtar A., Sahari J., Jamaludin K. R, Ibrahim M. H., Mohamad Nor N. H., Murtadhahadi I.: Producing of titanium foam using titanium alloy (Al3Ti) by slurry method. Brunei Int. Conf. of Eng. And Techn. (BICET) 3-4.11.2008 Brunei (2008).Search in Google Scholar

Esen Z., Bor S.: Processing of titanium foams using magnesium spacer particles. Scripta Materialia, 56 (2007), 341-344.Search in Google Scholar

Kotan G., Bor A. S.: Production and Characterization of High Porosity Ti-6A-4V Foam by Space Holder Technique in Powder Metallurgy. Turkish J. Eng. Env. Sci. 31 (2007), 149-156.Search in Google Scholar

Xiong J., Li Y., Wang X., Hodgson P., Wen C.: Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications. Acta Biomaterialia, 4 (2008), 1963-1968.Search in Google Scholar

Lu Y-P., Li M-S., Li S-T., Wang Z-G., Zhu R-F.: Plasma-sprayed hydroxyapatite + titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials, 25 (2004), 4393-4403.Search in Google Scholar

Liu X., Chu P. K., Ding Ch.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering, 47 (2004), 49-121.Search in Google Scholar

Wen C. E., Xu W., Hu W. Y., Hodgson P. D.: Hydroxyapatite/titania sol-gel coatings on titanium-zirconium alloy for biomedical applications. Acta Biomaterialia, 3 (2007), 403-410.Search in Google Scholar

Mayr H., Ordung M., Ziegler G.: Development of thin electrophoretically deposited hydroxyapatite layers on Ti6Al4V hip prosthesis. J. Mater Sci., 41 (2006, 8138-8143.10.1007/s10853-006-0487-8Search in Google Scholar

Wang C. X., Wang M., Zhou X.: Nucleation and growth of apatite on chemically treated titanium alloy: an electrochemical impedence spectroscopy study. Biomaterials, 24 (18) (2003), 3069-3077.10.1016/S0142-9612(03)00154-6Search in Google Scholar

Sobieszczyk S.: Hydroxyapatite coatings on porous Ti and Ti alloys. Advances in Mater. Sci., 10 (1) (2010) 19-28.Search in Google Scholar

Schmidt C., Kaspar D., Sarkar M. R., Claes L. E., Ignatius A. A.: A scanning electron microscopy study of human osteoblast morphology on five orthopaedic metals. J. Biomed. Mater. Res. (Appl. Biomaterials), 63 (2002), 252-261.Search in Google Scholar

Annaz B., Hing K. A., Kayser M., Buckland T., Di Silvo L.: Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. J. of Microscopy, 215 (2004), 100-110.Search in Google Scholar

Sun J., Han Y., Cui K.: Microstructure and apatite-forming ability of the MAO-treated porous titanium. Surface & Coatings Technology, 202 (2008) 4248-4256.Search in Google Scholar

Lu Y-P., Song Y-Z., Zhu R-F., Li M-S., Lei T-Q.: Factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment. Applied Surf. Sci., 206 (2003), 345-354.Search in Google Scholar

Feng B., Chu X., Chen J., Wang J., Lu X., Weng J.: Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Materials (2009) published on-line:http://www.springerlink.com/content/793488162u28q61t/Search in Google Scholar

Jones J. R.: New trends in bioactive scaffolds: The importance of nanostructure. J European Cer. Soc., 29 (2009), 1275-1281.10.1016/j.jeurceramsoc.2008.08.003Search in Google Scholar

Sridhar T. M., Eliaz N., Mudali U. K., Ray B.: Electrophoretic deposition of hydroxyapatite coatings and corrosion aspects of metallic implants. Corr. Rev., 20(4-5) (2002), 255-293.10.1515/CORRREV.2002.20.4-5.255Search in Google Scholar

Sobieszczyk S.: Surface modifications of Ti and Ti alloys. Advances in Materials Science, 10(1) (2010) 29-42.Search in Google Scholar

Chen X. V., Nouri A., Li Y. C., Lin J. G., Hodgson P. D., Wen C. E.: Effect of surface roughness of Ti, Zr and TiZr on apatite precipitation from simulated body fluid. Biotechnol Bioeng, 101 (2008), 378-387.Search in Google Scholar

Chen X. B., Li Y. C., Hodgson P. D., Wen C. E.: Microstructures and bond strengths of the calcium phosphate coatings formed on titanium from different simulated body fluids. Mater. Sci. Eng., C29 (2009), 165-171.10.1016/j.msec.2008.06.004Search in Google Scholar

Wang X. J., Li Y. C., Lin J. G., Hodgson P. D., Wen C. E.: Apatite-inducing ability of titanium oxide layer on titanium surface: the effect of surface energy. J. Mater. Res., 23 (2008), 1682-1688.Search in Google Scholar

Gibson L. J.: Biomechanics of cellular solids. J Biomechanics, 38 (3) (2005) 377-399.Search in Google Scholar

Zhao C. Y., Zhu X. D., Yuan T., Fan H. S., Zhang X. D.: Fabrication of biomimetic apatite coating on porous titanium and their osteointegration in femurs of dogs. Mater. Sci. and Eng., C 30 (2010), 98-104.Search in Google Scholar

Wen C. E., Yamada Y., Shimojima K., Chino Y., Asahina T., Mabuchi M.: Processing and mechanical properties of autogenous titanium implant materials. J Mater. Sci.: Mater in Medicine, vol.13(4) (2002), 397-401.10.1023/A:1014344819558Search in Google Scholar

Oh I-H., Nomura N., Masahashi N., Hanada S.: Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Materialia, 49 (12) (2003), 1197-1202.10.1016/j.scriptamat.2003.08.018Search in Google Scholar

Niemeyer T. C., Grandini C. R., Pinto L. M. C., Angelo A. C. D., Schneider S. G.: Corrosion behaviour of Ti-13Nb-13Zr alloy used as a biomaterial. J. Alloys and Comp., 476 (2009), 172-175.Search in Google Scholar

Lacroix D., Chateau A., Ginebra M-P., Planell J. A.: Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials, 27 (2006), 5326-5334.Search in Google Scholar

eISSN:
2083-4799
ISSN:
1730-2439
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials