[Tsui Y.C., Doyle C., Clyne T.W.: Plasma sprayed hydroxyapatite coatings on titanium substrates. Part I: Mechanical properties and residual stress levels. Biomaterials 19 (1998) 2015-2029.]Search in Google Scholar
[Tsui Y.C., Doyle C., Clyne T.W.: Plasma sprayed hydroxyapatite coatings on titanium substrates. Part II: optimisation of coatings properties. Biomaterials 19 (1998) 2015-2029.]Search in Google Scholar
[Rice J.M., Hunt J.A. Gallagher J.A.: Quantitative evaluation of the biocompatible and osteogenic properties of a range of biphasic calcium phosphate (BC) granules using primary cultures of human osteoblasts and monocytes. Calcified Tissue International 72, 2003, 726-736.10.1007/s00223-002-2045-y14563002]Search in Google Scholar
[Habibovic P., Li J., van der Walk C.M., Meijer G., Layrolle P., van Blitterswijk C.A., de Grott K.: Biological performance of uncoated and octacalcium phosphate coated Ti6Al4V. Biomaterials 28 (2007) 4209-4218.]Search in Google Scholar
[Leadley S.R., Davies M.C., Castro Ribeiro C., Barbosa M.A., Paul A.J., Watts J.F.: Investigation of the dissolution of the bioceramic hydroxyapatite in the presence of titanium ions using ToF-SIMS and XPS. Biomaterials 18 (1997) 311-316.]Search in Google Scholar
[Ozawa S., Kasugai S.: Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in a rat bone marrow stromal cell culture. Biomaterials 17 (1996) 23-29.]Search in Google Scholar
[Liu D.-M., Yang Q., Troczynski T.: Sol-gel hydroxyapatite coatings on stainless steels substrates. Biomaterials 23 (2002) 691-698.]Search in Google Scholar
[Miyazaki T., Kim H.-M., Kokubo T., Ohtsuki C., Kato H., Nakamura T.: Mechanism of bonelike apatite formation on bioactive tantalum metal in a simulated body fluid. Biomaterials 23 (2002) 827-832.]Search in Google Scholar
[Uchida M., Kim H.-M., Miyaji F., Kokubo T., Nakamura T.: Apatite formation on zirconium metal treated with aqueous NaOH. Biomaterials 23 (2002) 313-317.]Search in Google Scholar
[Ong J.L., Carnes D.L., Bessho K.: Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials 25 (2004) 4601-4606.]Search in Google Scholar
[Porter A., Taak P., Hobbs L.W., Coathup M.J., Blunn G.W., Spector M.: Bone bonding to hydroxyapatite and titanium surfaces on femoral stems retrieved from human subjects at autopsy. Biomaterials 25 (2004) 5199-5208.]Search in Google Scholar
[Gross K.A., Walsh W., Swarts E.: Analysis of retrieved hydroxyapatite-coated hip protheses. Journal of Thermal Spray Technology, 13 (2), 2004, 191-199.10.1361/10599630418112]Search in Google Scholar
[Yoshinari M., Oda Y., Inoue T., Matsuzaka K., Shimono M.: Bone response to calcium phosphate-coated and biphosphonate-immobilized titanium implants. Biomaterials 23 (2002) 2879-2885.]Search in Google Scholar
[Nguyen H.Q., Deporter D.A., Pilliar R.M., Valiquette N., Yakubovich R.: The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials 25 (2004) 865-876.]Search in Google Scholar
[Queiroz A.C., Santos J.D., Vilar R., Eugénio S., Monteiro F.J.F.J.: Laser surface modification of hydroxyapatite and glass-reinforced hydroxyapatite. Biomaterials 25 (2004) 4607-4614.]Search in Google Scholar
[Mano T., Ueyama Y., Ishikawa K., Matsumura T., Suzuki K.: Initial tissue response to a titanium implant coated with apatite at room temperature using a blast coating method. Biomaterials 23 (2002) 1931-1936.]Search in Google Scholar
[Lynn A.K., DuQuesnay D.L.: Hydroxyapatite-coated Ti-6Al-4V. Part I: the effect of coating thickness on mechanical fatigue behaviour. Biomaterials 23 (2002) 1937-1946.]Search in Google Scholar
[Lynn A.K., DuQuesnay D.L.: Hydroxyapatite-coated Ti-6Al-4V. Part II: the effect of post-deposition heat treatment at low temperatures. Biomaterials 23 (2002) 1947-1953.]Search in Google Scholar
[Yang Y.C., Chang E.: Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V substrate. Biomaterials 22 (2001) 1827-1836.]Search in Google Scholar
[Yang Y.C., Chang E., Hwang B.H., Lee S.Y.: Biaxial residual stress states of plasma-sprayed hydroxyapatite coatings on titanium alloy substrate. Biomaterials 21 (2000) 1327-1337.]Search in Google Scholar
[Yang Y., Kim K.-H., Agrawala C., Ong J.L. (2004): Interaction of hydroxyapatite-titanium at elevated temperature in vacuum environment. Biomaterials, 25, 2927-2932.10.1016/j.biomaterials.2003.09.07214967524]Search in Google Scholar
[Kurzweg H., Heimann R.B., Troczynski T., Wayman M.L.: Development of plasma-sprayed bioceramic coatings with bond coats based on titania and zirconia. Biomaterials 19 (1998) 1507-1511.]Search in Google Scholar
[Cabrini M., Cigada A., Rondelli G., Vicentini B.: Effect of different surface finishing and of hydroxyapatite coatings on passive and corrosion current of Ti6Al4V alloy in simulated physiological solution. Biomaterials 18 (1997) 783-787.]Search in Google Scholar
[Zhang C., Leng Y., Chen J.: Elastic and plastic behavior of plasma-sprayed hydroxyapatite coatings on a Ti-6Al-4V substrate. Biomaterials 22 (2001) 1357-1363.]Search in Google Scholar
[Heimann R.B., Wirth R.: Formation and transformation of amorphous calcium phosphates on titanium alloy surfaces during atmospheric plasma spraying and their subsequent in vitro performance. Biomaterials 27 (2006) 823-831.]Search in Google Scholar
[Choi J.-M., Kim H.-E., Lee I.-S.: Ion-beam-assisted deposition (IBAD) of hydroxyapatite coating layer on Ti-base metal substrate. Biomaterials 21 (2000) 469-473.]Search in Google Scholar
[Thian E.S., Khor K.A., Loh N.H., Tor S.B.: Processing of HA-coated Ti-6Al-4V by a ceramic slurry approach: an in vitro study. Biomaterials 22 (2001) 1225-1232.]Search in Google Scholar
[Koshino T., Murase T., Takagi T., Saito T.: New bone formation around porous hydroxyapatite wedge implanted in opening wedge high tibial osteotomy in patients with osteoarthritis. Biomaterials 22 (2001) 1579-1582.]Search in Google Scholar
[Breme J., Zhou Y., Groh L.: Development of a titanium alloy suitable for an optimized coating with hydroxyapatite. Biomaterials 16 (1995) 239-244.]Search in Google Scholar
[Wang X.-X., Hayakawa S., Tsuru K., Osaka A.: Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 23 (2002) 1353-1357.]Search in Google Scholar
[Gan L., Wang J., Pilliar R.M.: Evaluating interface strength of calcium phosphate sol-gel-derived thin films to Ti6Al4V substrate. Biomaterials 26 (2005) 189-196.]Search in Google Scholar
[Kim H.-W., Koh Y.-H., Lo L.-H., Lee S., Kim H.-E.: Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials 25 (2004) 2533-2538.]Search in Google Scholar
[Kim H.-W., Kong Y.-M., Bae C.-J., Noh Y.-J., Kim H.-E.: Sol-gel derived fluor-hydroxyapatite biocoatings on zirconia substrate. Biomaterials 25 (2004) 2919-2926.]Search in Google Scholar
[Liang B., Fujibayashi S., Neo M., Tamura J., Kim H.-M., Uchida M., Kokubo T., Nakamura T.: Histological and mechanical investigation of the bone-bonding ability of anodically oxidized titanium in rabbits. Biomaterials 24 (2003) 4959-4966.]Search in Google Scholar
[Yang B., Uchida M., Kim H.-M., Zhang X., Kokubo T.: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25 (2004) 1003-1010.]Search in Google Scholar
[Frauchiger V.M., Schlottig F., Gasser B., Textor M.: Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials 25 (2004) 593-606.]Search in Google Scholar
[Li L.-H., Kong Y.-M., Kim H.-W., Kim Y.-W., Kim H.-E., Heo S.-J., Koak J.-Y. (2004): Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials, 25 (2004) 2867-2875.]Search in Google Scholar
[Giavaresi G., Ambrosio L., Battistion G.A., Casellato U., Gerbasi R., Finia M., Aldini N.N., Martini L., Rimondini L., Giardino R.: Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour deposition: an in vivo study. Biomaterials 25 (2004) 5583-5591.]Search in Google Scholar
[Song W.-H., Jun Y.-K., Han Y., Hong S.-H.: Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials 25 (2004) 3341-3349.]Search in Google Scholar
[Wang X.-X., Yan W., Hayakawa S., Tsuru K., Osaka A.: Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials 24 (2003) 4631-4637.]Search in Google Scholar
[Feng B., Chen J.Y., Qi S.K., He L., Zhao J.Z., Zhang X.D.: Carbonate apatite coating on titanium induced rapidly by precalcification. Biomaterials 23 (2002) 173-179.]Search in Google Scholar
[Jonášova L., Müller F.A., Helebrant A., Strnad J., Greil P.: Biomimetic apatite formation on chemically treated titanium. Biomaterials 25 (2004) 1187-1194.]Search in Google Scholar
[Liu Q., Ding J., Mante F.K., Wunder S.L., Baran G.R.: The role of functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials 23 (2002) 3103-3111.]Search in Google Scholar
[Barrere F., van Blitterswijk C.A., de Groot K., Layrolle P.: Nucleation of biomimetic Ca-P coatings on Ti6Al4V from a SBF x 5 solution: influence of magnesium. Biomaterials, 23 (2002) 2211-2220.]Search in Google Scholar
[Barrere F., Snel M.M.E., van Blitterswijk C.A., de Groot K., Layrolle P.: Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials, 25 (2004) 2901-2910.]Search in Google Scholar
[Yan W.-Q., Nakamura T., Kawanabe K., Nishigochi S., Oka M., Koubo T.: Apatite layer-coated titanium for use as bone bonding implants. Biomaterials 18 (1997) 1185-1190.]Search in Google Scholar
[Wen H.B., de Wijn J.R., Cui F.Z., de Groot K.: Preparation of bioactive Ti6Al4V surfaces by a simple method. Biomaterials 19 (1998) 215-221.]Search in Google Scholar
[Wang J., Laurolle P., Stigter M., de Groot K.: Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials 25 (2004) 583-592.]Search in Google Scholar
[Li S.J., Yang R., Niinomi M., Hao Y.L., Cui Y.Y.: Formation and growth of calcium phosphate on the surface of oxidized Ti-29Nb-13Ta-4.6Zr alloy. Biomaterials 25 (2004) 2525-2532.]Search in Google Scholar
[Ball M.D., Downes S., Scotchford C.A., Antonov E.N., Bagratashvilli V.N., Popov V.K., Lo W.-J., Grant D.M., Howdle S.M.: Osteoblast growth on titanium foils coated with hydroxyapatite by pulsed laser ablation. Biomaterials, 22 (2001) 337-347.]Search in Google Scholar
[Cléries L., Fernández-Pradas J.M., Morenza J.L.: Behavior in simulated body fluid of calcium phosphate coatings obtained by laser ablation. Biomaterials 21 (2000) 1861-1865.]Search in Google Scholar
[Giavaresi G., Fini M., Cigada A., Cheisa R., Rondelli G., Rimondini L., Torricelli P., Aldini N.N., Giardino R.: Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone. Biomaterials 24 (2003) 1583-1594.]Search in Google Scholar
[Cheng X., Filliaggi M., Roscoe S.G.: Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy. Biomaterials 25 (2004) 5395-5403.]Search in Google Scholar
[Serro A.P., Fernandes A.C., Saramago B., Lima J., Barbosa M.A.: Apatite deposition on titanium surfaces - the role of albumin adsorption. Biomaterials 18 (1997) 963-968.]Search in Google Scholar
[Feng B., Chen J., Zhang X.: Interaction of calcium and phosphate in apatite coating on titanium with serum albumin. Biomaterials 23 (2002) 2499-2507.]Search in Google Scholar
[Milella E., Cosentino F., Licciulli A., Massaro C.: Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol-gel process. Biomaterials 22 (2001) 1425-1431.]Search in Google Scholar
[Zheng X., Huang M., Ding C.: Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 21 (2000) 841-849.]Search in Google Scholar
[Ding S.-J.: Properties and immersion behavior of magnetron-sputtered multilayered hydroxyapatite/titanium composite coatings. Biomaterials 24 (2003) 4233-4238.]Search in Google Scholar
[Ramires P.A., Romito A., Cosentino F., Milella E.: The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials 22 (2001) 1467-1474.]Search in Google Scholar
[Ning C.Q., Zhou Y.: In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method. Biomaterials 23 (2002) 2909-2915.]Search in Google Scholar
[Piveteau L.-D., Gasser B., Schlapbach L.: Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application. Biomaterials 21 (2000) 2193-2201.]Search in Google Scholar
[Wen H.B., Wolke J.G.C., de Wijn J.R., Liu Q., Cui F.Z., de Groot K.: Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatment. Biomaterials 18 (1997) 1471-1478.]Search in Google Scholar
[Liu Y.-P., Li M.-S., Wang Z.-G., Zhu R.-F.: Plasma-sprayed hydroxyapatite + titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 25 (2004) 4393-4403.]Search in Google Scholar
[Li H., Khor K.A., Cheng P. (2003): Impact formation and microstructure characterization of thermal sprayed hydroxyapatite/titania composite coatings. Biomaterials 24 (2003) 949-957.]Search in Google Scholar
[Yamada K., Imamura K., Itoh H., Iwata H., Maruno S.: Bone bonding behavior of the hydroxyapatite containing glass-titanium composite prepared by the Cullet method. Biomaterials 22 (2001) 2207-2214.]Search in Google Scholar
[So K., Fujibayashi S., Neo M., Anan Y., Ogawa T., Kokubo T., Nakamura T.: Accelerated degradation and improved bone-bonding ability of hydroxyapatite ceramics by addition of glass. Biomaterials 27 (2006) 4738-4744.]Search in Google Scholar
[Chou B.-Y., Chang E.: Microstructural characterization of plasma-sprayed hydroxyapatite-10 wt.% ZrO2 composite coating on titanium. Biomaterials 20 (1999) 1823-1832.]Search in Google Scholar
[Gu Y.W., Khor K.A., Pan D., Cheang P.: Activity of plasma yttria stabilized zirconia reinforced hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid. Biomaterials 25 (2004) 317703185.]Search in Google Scholar
[Khor K.A., Gu Y.W., Pan D., Cheang P.: Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings. Biomaterials 25 (2004) 4009-4017.]Search in Google Scholar
[Dong Z.L., Khor K.A., Quek C.H., White T.J., Cheang P.: TEM and SEM analysis on heat-treated and in vitro plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings. Biomaterials 24 (2003) 97-105.]Search in Google Scholar
[Thian E.S., Loh N.H., Khor K.A., Tor S.B.: Microstructures and mechanical properties of powder injection molded Ti-6Al-4V/HA powder. Biomaterials 23 (2002) 2927-2938.]Search in Google Scholar
[Gu Y.W., Khor K.A., Cheang P.: In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF). Biomaterials 24 (2003) 1603-1611.]Search in Google Scholar
[Grandjean- Laquerriere A., Laquerriere P., Jallot E., Nedelec J.-M., Guenounou M., Laurent-Maquin D., Phillips T.M.: Influence of the zinc concentration of sol-gel derived zone substituted hydroxyapatite on cytokine production by human monocytes in vitro. Biomaterials 27 (2006) 3195-3200.]Search in Google Scholar
[Kim H.-W., Knowles J.C., Kim H.-E.: Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 25 (2004) 1279-1287.]Search in Google Scholar
[Liu X., Dong C.: Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys. Biomaterials 23 (2002) 4065-4077.]Search in Google Scholar
[Di Palma F., Chamson A., Lafage-Prouts M.-H., Jouffray P., Sabido O., Peyroche S., Vico L., Rattner A.: Physiological strains remodel extracellular matrix and cell-cell adhesion in osteoblastic cells cultured on alumina-coated titanium alloy. Biomaterials 25 (2004) 2565-2575.]Search in Google Scholar
[Saiz E., Goldman M., Gomez-Vega J.M., Tomsia A.P., Marshall G.W., Marshall S.J.: In vitro behavior of silicate glass coatings on Ti6Al4V. Biomaterials 23 (2002) 3749-3756.]Search in Google Scholar
[Li S.J., Niinomi M., Akahori T., Kasuga T., Yang R., Gao Y.L.: Fatigue characteristics of bioactive glass-ceramic coated Ti-29Nb-13Ta-4.6Zr for biomedical application. Biomaterials 25 (2004) 3369-3378.]Search in Google Scholar
[Bosetti M., Vernè E., Ferraris M., Ravaglioli A., Cannas M.: In vitro characterisation of zirconia coated by bioactive glass. Biomaterials 22 (2001) 987-994.]Search in Google Scholar
[Schroeder A., Francz G., Bruinink A., Hauert R., Mayer J., Wintermantel E.: Titanium containing amorphous hydrogenated carbon films (a-C:H/Ti): surface analysis and evaluation of cellular reactions using bone marrow cell cultures in vitro. Biomaterials 21 (2000) 449-456.]Search in Google Scholar
[Porté-Durreiu M.C., Guillemot F., Pallu S., Labrugére C., Brouillaud B., Bareille R., Amédée J., Barthe N., Dard M., Baquey Ch.: Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion. Biomaterials 25 (2004) 4837-4846.]Search in Google Scholar
[Morra M., Cassinelli C., Casrado G., Cahalan P., Cahalan L., Fini M., Giardino R.: Surface engineering of titanium by collagen immobilization. Surface characterization and in vitro and in vivo studies. Biomaterials 24 (2003) 4639-4654.]Search in Google Scholar
[De Giglio E., Guascito M.R., Sabbatini L., Zambonin G.: Electropolymerizarion of pyrrole on titanium substrates for the future development of new biocompatible surfaces. Biomaterials 22 (2001) 2609-2616.]Search in Google Scholar
[Haddow D.B., Kothari S., James P.F., Short R.D., Hatton P.V., van Noort R.: Synthetic implant surfaces. 1. The formation and characterization of sol-gel titania films. Biomaterials 17 (1996) 501-507.]Search in Google Scholar
[Manso M., Ogueta S., Garcia P., Pérez-Rigueiro J., Jiménez C., Martinez-Duart J.M., Langlet M.: Mechanical and in vitro testing of aerosol-gel deposited titania coatings for biocompatible applications. Biomaterials 23 (2002) 349-356.]Search in Google Scholar
[Yang Y., Tian J., Deng L., Ong J.L.: Morphological behavior of osteoblast-like cells on surface-modified titanium in vitro. Biomaterials 23 (2002) 1383-1389.]Search in Google Scholar
[Yang Y., Ong J.L., Tian J.: Depostion of highly adhesive ZrO2 coating on Ti and CoCrMo implant materials using plasma spraying. Biomaterials 24 (2003) 619-627.]Search in Google Scholar
[Chevalier J.: What future for zirconia as a biomaterial? Biomaterials 27 (2006) 535-543.]Search in Google Scholar
[Wierzchoń T., Czarnowska E., Krupa D.: Inżynieria powierzchni w wytwarzaniu biomateriałów tytanowych. Ofic. Wyd. Politechniki Warszawskiej, Warszawa 2004.]Search in Google Scholar
[Marciniak J.: Biomateriały. Wyd. Politechniki Śląskiej, Gliwice 2002.]Search in Google Scholar
[Zieliński A., Świeczko-Żurek B., Sobieszczyk S.: Estimation of the expected effects of different surface modifications on mechanical, chemical and biological behaviour of endoprostheses. Inżynieria Biomateriałów 9 (2006) 217-219.]Search in Google Scholar