Accesso libero

Composite Oxide Electrolytes for Electrochemical Devices

   | 23 set 2008
INFORMAZIONI SU QUESTO ARTICOLO

Advances in Ceramics, Science and Technology of Zirconia, tom 1-5, 1982-1993.Search in Google Scholar

Kiukola K, Wagner C, Measurements on galvanic cells involving solid oxide electrolytes, Journal of the Electrochemical Society 104 (1957) pp.379-387.Search in Google Scholar

Pratt T, Application of solid electrolyte in thermodynamic studies, Metallurgical Transaction, 21A, pp. 1990-1223.10.1007/BF02698252Search in Google Scholar

Róg G, Kozłowska-Róg A, Dudek M, The standard Gibbs free energy of calcium chromium (III) oxide in the temperature range (1073-1273)K Journal of Chemical Thermodynamics 39 (2007) pp. 275-278.Search in Google Scholar

Kopyto M, Fitzner K, Gibbs energy of formation of Cu2Ln2O5 (Ln = Yb, Tm, Er, Ho, Dy) and CuGd2O4, Journal of Materials Science 31, (1996), pp.2797-2800.Search in Google Scholar

Haile S., Materials for fuel cells, Materials Today 6 (2003) pp. 24-29.Search in Google Scholar

Pluschkell W, Electronic conduction in the solid electrolyte of oxygen concentration, Archiv für das Eisenhuttenwesen 46 (1975) pp. 11-18.Search in Google Scholar

Ishihara, T., Masuda, H., Takaita, Y., Doped LaGaO3 perovskite type oxides as a new oxide ion conductors, Journal of the American Ceramic Society 116 (1994) pp. 3801-3806.Search in Google Scholar

Manthiram, A., Kuo, J. Goodneough, J., Characterization of oxygen-deficient perovskites as oxide ion electrolytes Solid State Ionics 62(1993) pp. 225-234.Search in Google Scholar

Kato H, Kudo T, Naito H, Yugami H., Electrical conductivity of Al-doped La1-xSrxScO3 perovskite-type oxides as electrolyte materials for low-temperature SOFC Solid State Ionics 159(2003) pp.217-222.Search in Google Scholar

Kutty K V, Mathews C K, Rao C T and Varadaraju UT, Oxide ion conductivity in some substituted rare earth pyrozironiates, Solid State Ionics 80 (1995)pp. 99-110.Search in Google Scholar

Arikawa H, Nishiguchi H, Ishihara H, Takita Y, Oxide ion conductivity in Srdoped La10Ge6O27 apatite oxide Solid State Ionics 136-137(2000) pp.31-37.Search in Google Scholar

Zhang Y, Huang X, Lu Z, Liu Z, Ge X, Xu J, Xin X, Sha X, Su W, A novel method for fabrication of Y2O3-stabilized ZrO2 electrolyte films, Journal of the American Ceramic Society 89 (2006) pp.2304-2307.Search in Google Scholar

Gaudon M, Djurado E, Menzler N, Morphology and sintering behaviour of yttria stabilised zirconia (8-YSZ) powders synthesised by spray pyrolysis, Ceramic International 30 (2004) pp. 2295-2303.Search in Google Scholar

Peng R, Xia Ch, Peng D, Meng G, Effect of powder preparation on (CeO2)0.8(Sm2O3)0.1 thin film properties by screen-printing, Materials Letters 58 (2004) pp.604-608.Search in Google Scholar

Cheng J, Zha S, Huang J, Liu X, Meng G, Sintering behaviour and electrical conductivity of Ce0.9Gd0.1O1.95 powder prepared by the gel-casting process Materials Chemistry and Physics 78 (2003) pp.791-795.Search in Google Scholar

Shai K, Wagner J., Enhanced ionic conduction in dispersed solid electrolyte systems (DSES) and/or multiphase systems: AgI-Al2O3, Agl-SiO2, AgI-Fly ash, and AgI-AgBr Journal of Solid State Chemistry 42 (1982) pp.107-119.Search in Google Scholar

Knauth P, Debierre J, Albient G, Electrical conductivity of model composites of an ionic conductor (CuBr) and an insulator (TiO2, Al2O3): experiments and percolation-type model, Solid State Ionics 121 (1999), pp.101-106.Search in Google Scholar

Fuijtsu S, Koumoto M, Yanagida H, Kanazawa T, Enhancement of ionic conduction in CaF2 and BaF2 by dispersion of Al2O3, Journal of Materials Science 22 (1985) pp. 2103-2109Search in Google Scholar

Liang C, Conduction characteristic of the lihium iodide-aluminium oxide solid electrolytes, Journal of the Electrochemical Society 120 (1973) pp.1289-92.Search in Google Scholar

Jacob, K. T, Shukla, A., Kinetic decomposition of Ni2SiO4 in oxygen potential gradients Journal of Materials Research 2 (1987) pp.338-342.Search in Google Scholar

Vaidehi N, Akila R, Shukla A, Jacob K, Enhanced T, ionic conduction in dispersed solid electrolyte systems CaF2-Al2O3 and CaF2-CeO2Materials Research Bulletin 21(1986) pp. 909-916.Search in Google Scholar

Bućko M, Róg G; Electrical conductivity in α-Al2O3 - Ca-β- Al2O3 system; in Fourth Euro-Ceramics, Proceedings of the Fourth European Ceramic Society Conference, Riccione '95, vol.5 Electroceramics; ed. G. Gusmano, E. Traversa; Gruppo Editoriale Faenza Editrice, 1995, pp. 365-372.Search in Google Scholar

Bućko M, Róg G; Properties of ZrO2 - Ca-β-Al2O3 composites; in Fourth Euro-Ceramics, Proceedings of the Fourth European Ceramic Society Conference, Riccione '95, vol.5 Electroceramics; ed. G. Gusmano, E. Traversa; Gruppo Editoriale Faenza Editrice, 1995, pp. 421-426.Search in Google Scholar

Wagner J, Transport in compounds containing a dispersed second phase, Materials Research Bulletin, 15 (1980) pp.1690-1701;10.1016/0025-5408(80)90187-7Search in Google Scholar

Meier J, Defect chemistry and conductivity effects in heterogeneous solid electrolytes Journal of the Electrochemical Society 134 (1987) pp.1524-35.Search in Google Scholar

Jamnik J, Meier J., Defect chemistry and chemical transport involving interfaces, Solid State Ionics 119 (1999) pp. 191-198.Search in Google Scholar

Dudney N, Effect of interfacial space - charge polarization on the ionic conductivity of composite electrolytes, Journal of the American Ceramic Society 68 (1985) pp.538-45.Search in Google Scholar

Bunde A, Dieterich W, Percolation in composites, Journal of Electroceramics 5(2000) pp. 81-92.Search in Google Scholar

Knauth P, Ionic Conductor Composites: Theory and Materials, Journal of Electroceramics 5 (2000) pp.111-125.Search in Google Scholar

Uvarov N, Iusupov V, Sharama V, Shukla K, Effect of morphology and particle size on the ionic conductivities of composite solid electrolytes, Solid State Ionics 51 (1992) pp.41-52.Search in Google Scholar

Yahiro H, Baba Y, Eguchi K, Arai H, High temperature fuel cell with ceriayttria solid electrolyte, Journal of the Electrochemical Society 135(1988) pp. 2077-2081.Search in Google Scholar

Bi Z, Yi B, Wang Z, Dong Y, Wu H, She Y, Cheng M, A high-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes, Electrochemical and Solid State Letters 7 (2004) pp.105-107.Search in Google Scholar

Wachsman ED, Functionally gradient bilayer oxide membranes and electrolytes Solid State Ionics 152-153(2002) pp.657-662.Search in Google Scholar

Peters A, Korte C, Hesse D, Zakharov N, Janek J, Ionic conductivity and activation energy for oxygen ion transport in superlattices -The multilayer system CSZ (ZrO2+CaO)/Al2O3Solid State Ionics 178 (2007) pp. 67-76.Search in Google Scholar

S. H. Chan X J Chen K A Khor., A simple bilayer electrolyte model for solid oxide fuel cells, Solid State Ionics 158(2003) pp.29-43.Search in Google Scholar

Jacob K T, Mukhopadhyay S, Shukla A, Gradient solid-electrolyte for use with dissimilar gas electrodes, Solid State Ionics 62 (1993) pp. 27-33;10.1016/0167-2738(93)90249-3Search in Google Scholar

Mukhopadhyay S, Jacob KT, Theoretical analysis of the electromotive force of a cell incorporating a composition gradient solid electrolyte Journal of the Electrochemical Society 142 (1995) pp 161-165.10.1149/1.2043857Search in Google Scholar

Mukhopadhyay S, Jacob KT, Thermodynamic study of mixed anionic solid solutions using gradient solid electrolytes, System K2CO3-K2SO4., Journal of the Electrochemical Society 140 (1993) pp. 2629-2733.Search in Google Scholar

Virkar A, Theoretical analysis of solid oxide fuel cells with two-layer composite electrolytes: electrolytes stability, Journal of the Electrochemical Society 138 (1991) 1481-1487.10.1149/1.2085811Search in Google Scholar

Jacob K T, Dasgupta N, Waseda Y, Composition-graded solid electrolyte for determination of the Gibbs energy of formation of lanthanum zirconate Journal of the American Ceramic Society 81 (1998) pp.1926-1930.Search in Google Scholar

Mukhopadhyay S, Jacob KT, Gradient solid electrolytes for thermodynamic measurements: system Na2CO3-Na2SO4, Metallurgical and Materials Transactions 25A (1994)pp. 173-181.Search in Google Scholar

Strickler D, Carlson W, Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2Journal of the American Ceramic Society 47 (1964) pp.122-127.Search in Google Scholar

Mori T, Drennan J, Lee Y, Li J, Ikegami T, Improving the ionic conductivity of yttria-stabilised zirconia electrolyte materials, Solid State Ionics 154-155(2002) pp. 529-533.Search in Google Scholar

Bartolomeo E, Grilli M, YSZ-based electrochemical sensors: From materials preparation to testing in the exhausts of an engine bench test, Journal of the European Ceramic Society 25 (2005) pp.2959-2964.Search in Google Scholar

Kwon O, Choi G, Electrical conductivity of thick film YSZ Solid State Ionics 177 (2006) pp. 3057-3062.Search in Google Scholar

Minh N, Ceramic fuel cells, Journal of the American Ceramic Society 76 (1993) pp.563-588.Search in Google Scholar

Molenda J, High - temperature solid oxide fuel cells. New Trends in materials research, Materials Science-Poland 24 (2006) pp.5-11.Search in Google Scholar

Kharton V, Fiueiredo M, Navarro L, Naumovich E, Kovalevsky A, Yaremchenko A, Viskup A, Carneiro A, Margues A, Frade J, Ceria -based materials for solid oxide fuel cells, Journal of Materials Science 36 (2001) pp. 1105-1117.Search in Google Scholar

Minh N Q., Solid oxide fuel cell technology-features and applications Solid State Ionics 174 (2004) pp. 271-277.Search in Google Scholar

Besra L, Compson Ch, Liu M, Electrophoretic deposition of YSZ particles on nonconducting porous NiO -YSZ substrate for solid oxide fuel cells applications, Journal of the American Ceramic Society 89 (2006) pp. 3003-3009.Search in Google Scholar

Matsuda, M., Hosomi, T., Murata, K., Fukui, T., Miyake, M., Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported, S. O. F. C., Journal of Power Sources 165 (2007) pp. 102-107.Search in Google Scholar

Krzystek, K., Rak, M., Z Wytwarzanie ogniw paliwowych stałotlenkowych, Polski Biuletyn Ceramiczny 84(2004) pp. 307-312.Search in Google Scholar

Fischer W, Malzbender J, Blass G, Steinbrech R, Residual stresses in planar solid oxide fuel cells Journal of Power Sources 150 (2005)pp. 73-77.Search in Google Scholar

Malzbender J, Steinbrech RW, Fracture test of thin sheet electrolytes for solid oxide fuel cells, Journal of the European Ceramic Society 27 (2007) pp. 2597-2603.Search in Google Scholar

Abraham I, Gritzner G, Powder preparation, mechanical and electrical properties of cubic zirconia ceramics Journal of the European Ceramic Society 16 (1996) pp.71-77.Search in Google Scholar

Selcuk A, Atkinson A, Elastic properties of ceramic oxides used in solid oxide fuel cells (SOFC) Journal of the European Ceramic Society 17 (1997) pp.1523-1532.Search in Google Scholar

Adams J, Ruth R, Mazdiyasni K, Young's modulus, flexural strength, and fracture of yttria-stabilized zirconia versus temperature Journal of the American Ceramic Society 80 (1997)pp. 903-908.Search in Google Scholar

Susnik D, Holk J, Hrovat M, Zupancic S, Influence of alumina addition on characteristics of cubic zirconia Journal of Materials Science Letters 16 (1997) pp.1118-1121.Search in Google Scholar

Yuzaki A, Kishimoto A, Effects of alumina dispersion on ionic conduction of toughened zirconia based composite Solid State Ionics 116(1999) pp.47-51.Search in Google Scholar

Guo X, Tang Ch, Yuan R, Grain boundary ionic conduction in zirconia-based solid electrolyte with alumina addition, Journal of the European Ceramic Society 15 (1995)pp.25-32.Search in Google Scholar

Butler E, Drennan J, Microstructural analysis of sintered high-conductivity zirconia with Al2O3 additions,Journal of the American Ceramic Society 65 (1982) pp. 474-480.Search in Google Scholar

Feighery A, Irvine T, Effect of alumina additions upon electrical properties of 8 mol.% yttria-stabilised zirconia, Solid State Ionics 121(1999) 209-216.10.1016/S0167-2738(99)00015-6Search in Google Scholar

Mori M, Abe T, Itoh H, Yammato O, Takeda Y, Kawahara T, Cubic-stabilized zirconia and alumina composites as electrolytes in planar type solid oxide fuel cells Solid State Ionics 74 (1994) pp. 157-162.Search in Google Scholar

Kwon N H, Kim G, H, Song H, S, Lee L, H., Synthesis and properties of cubic zirconia-alumina composite by mechanical alloying, Materials Science and Engineering A 299 (2001) pp.185-194.Search in Google Scholar

K. Oe K Kikkawa A Kishimoto Y Nakamura H Yanagida., Toughening of ionic conductive zirconia ceramics utilizing a nonlinear effect, Solid State Ionics 91 (1996) 131-136.10.1016/S0167-2738(96)00417-1Search in Google Scholar

X. Guo R Yuan, Roles of alumina in zirconia-based solid electrolyte, Journal of Materials Science 30 (1995)pp.923-331.Search in Google Scholar

X. Guo, Roles of alumina in functional ceramics, Journal of the American Ceramic Society 86(2003) pp. 1867-73.Search in Google Scholar

Bućko M, Selected aspects of conductivity in heterophase ionic conductors, Polish Ceramic Bulletin 66 (2001), pp.547-554.Search in Google Scholar

Bućko M, Ionic conductivity of alumina - zirconia composites, Polish Ceramic Bulletin 61 (2000), pp. 95-102.Search in Google Scholar

Bućko M, Pyda W, Effect on inclusion size on mechanical properties of alumina toughened cubic zirconia, Journal of Materials Science 40 (2005) pp.5191-5198.Search in Google Scholar

Chen X, Yang B, A new approach for toughening of ceramics Materials Letters 33 (1997) pp. 237-240.Search in Google Scholar

Liu, X., Chen, X., Toughening of 8Y-FSZ ceramics by neodymium titanate secondary phase Journal of the American Ceramic Society 88 (2005) pp. 456-558.Search in Google Scholar

Milliken Ch, Guruswamy, S, Khandkar A, Properties and performance of cation - doped electrolyte materials in solid oxide fuel cell application. Journal of the American Ceramic Society 85 (2002) pp. 2479-86.Search in Google Scholar

Lu C, Worell W, Gorte R, Vohs J, SOFCs for direct oxidation of hydrocarbons fuels with samaria - doped ceria electrolyte, Journal of the Electrochemical Society 150 (2003) pp.354-358.Search in Google Scholar

Zhu S Xia Ch, Meng G, Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells, Journal of Power Sources 115 (2003) pp. 44-48.Search in Google Scholar

Mukundan E, Brosha E, Brown D, Garzon F, Ceria-electrolyte-based mixed potential sensors for the detection of hydrocarbons and carbon monoxide, Electrochemical and Solid State Letters 2 (1999) pp. 412-414.Search in Google Scholar

Dudek M, Molenda J, Preparation and properties of CeO2-based electrolytes, Polish Bulletin Ceramic 84 (2004) pp. 177-182.Search in Google Scholar

Xiong Y, Yamaji K, Horita T, Sakai N, Yokokawa H, Hole and electron conductivity of 20 % mol ReO1.5 Re = Yb, Gd, Sm, Y, Nd, La Journal of the Electrochemical Society 151 (2004), pp. 407-412.Search in Google Scholar

Xia Ch, Liu M, Low-temperature SOFCs-based on Ce0.9Gd0.1O2 fabricated by dry pressing, Solid State Ionics 144 (2001) 249-255.10.1016/S0167-2738(01)00980-8Search in Google Scholar

Sameshima S, Hirata Y, Ehira Y, Structural change in Sm- and Nd-doped ceria under a low oxygen partial pressure, Journal of Alloys and Compounds 408-412 (2006) pp. 628-631.Search in Google Scholar

Abrantes J, Perez - Coll D, Nuntez P, Frade J, Electronic transport in Ce0.8Sm0.2O1.9 samples, Electrochimica Acta 48 (2003) pp. 2761-2766.Search in Google Scholar

Inaba H, Tagawa H, Ceria -based solid electrolytes, Solid State Ionics 83 (1996)pp.1-16.Search in Google Scholar

Doshi R, Richards V, Carter J, Wang X, Krumpelt M, Development of solid-oxide fuel cells that operate at 500°C, Journal of the Electrochemical Society 146 (1999)pp.1273-1278.Search in Google Scholar

Matsui T, Inaba M, Mineshige A, Ogumi Z, Electrochemical properties of ceriabased oxides for use in intermediate-temperature SOFCs Solid State Ionics 176 (2005) pp.647-654.Search in Google Scholar

Herle J, Senevirate D, McEvoy A, Lanthanide co-doping of solid electrolytes: AC conductivity behaviour, Journal of the European Ceramic Society 19 (1999) 837-841.10.1016/S0955-2219(98)00327-6Search in Google Scholar

Dudek M, Ceramic oxide electrolytes based on CeO2-preparation, properties and possibility of application to electrochemical devices, Journal of the European Ceramic Society (2008) submitted to print.10.1016/j.jeurceramsoc.2007.09.004Search in Google Scholar

Wang F, Chen S, Cheng S, Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells, Electrochemistry Communications 6 (2004) pp. 743-746.Search in Google Scholar

Maricle D L, Swarm T E, Karavolis S, Enhanced ceria - a low-temperature SOFC electrolyte, Solid State Ionics 52(1992) 173-178.10.1016/0167-2738(92)90103-VSearch in Google Scholar

Liu Y, He T, Wang J, Shu W, The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte, Journal of Alloys and Compounds 389 (2005)pp.317-322.Search in Google Scholar

Dudek M, Ziewiec K, Preparation and the electrolytic properties of CaO-Sm2O3-CeO2 system, Advances in Materials Science 6 (2006) pp. 53-58.Search in Google Scholar

Soral P, Pal U, Worrel W, Comparison of power densities and chemical potential variation in solid oxide fuel cells with multilayer and single layer oxide electrolytes, Journal of the Electrochemical Society 145 (1998) pp.99-106.Search in Google Scholar

Hirabayashi D, Tomita A, Teranishi S, Hibinio T, Sano M, Improvement of a reduction-resistant Ce0.8Sm0.2O1.9 electrolyte by optimizing a thin BaCe1-xSmxO3-α layer for intermediate-temperature SOFCs Solid State Ionics 176 (2005) pp. 881-887.Search in Google Scholar

Mitsuyasu H, Nonaka Y, Eguchi K, Analysis of solid state reaction at the interface of yttria-doped ceria/yttria-stabilized zirconia, Solid State Ionics 113-115 (1998) pp. 279-284.Search in Google Scholar

Horita T, Sakai N, Yokokawa H, Dokiya M, Kawada T, Herle J, Sasaki K, Ceria-zirconia composite electrolyte for solid oxide fuel cells, Journal of Electroceramics 2 (1997) pp. 155-164.Search in Google Scholar

Park Y, Yoon H, Wachsman E, Fabrication and characterization of high-conductivity bilayer electrolytes for intermediate-temperature solid oxide fuel cells, Journal of the American Ceramic Society 88 (2005) pp. 2402-2408.Search in Google Scholar

Wachsman E, Functionally gradient bilayer oxide membranes and electrolytes, Solid State Ionics 152-153 (2002) pp.657-662.Search in Google Scholar

Wachsman E, Jayaweera P, Jiang N, Lowe D, Pound B, Stable High Conductivity Ceria/Bismuth Bilayered Electrolytes, Journal of the Electrochemical Society 144 (1997) pp. 233-236.Search in Google Scholar

Weyl A, Tu S, Janke D, Sensors based on new oxide electrolyte and oxygen reference materials for on-line measurements in steel research, Steel Research 65 (1994) pp.167-172.Search in Google Scholar

Subbarao E, Sutter P, Hrizo J, Defect structure and electrical conductivity of ThO2-Y2O3 solid solutions, Journal of the American Ceramic Society 48 (1965) pp. 443-446.Search in Google Scholar

Ramanarayanan T, Worell W, Limitation in the use of solid state electrochemical cells for high - temperature equilibrium measurements, Canadian Metallurgical Quarterly 13 (1974) pp. 325-329.Search in Google Scholar

Fischer W, Janke D, Schulenberg M, Calciumzirkonat als Festelektrolyt bei Temperaturen um 1600°C Archiv das Eissenhütenwesen 47 (1976) pp. 525-530.Search in Google Scholar

Janke D, Oxygen probes based on calcia-doped hafnia or calcium zirconate for use in metallic melts, Metallurgical Transaction 13B (1982) pp. 227-235.Search in Google Scholar

Pandit S, Weyl A, Janke D., High-temperature ionic and electronic conduction in zirconate and hafnate compounds, Solid State Ionics 69(1994) pp. 93-99.Search in Google Scholar

Dudek M, Bućko M, Electrical properties of stoichiometric and nonstoichiometric CaZrO3, Solid State Ionics 157(2003) pp. 183-187.Search in Google Scholar

Dudek M, Właściwości elektryczne i mechaniczne elektrolitów ceramicznych cyrkonian wapnia - regularny roztwór stały tlenku wapnia w dwutlenku cyrkonu. Materiały Ceramiczne 3 (2002) pp. 11-18.Search in Google Scholar

Dudek M, Róg G, Bogusz W, Kozłowska-Róg A, Bućko M, Zych Ł., Calcium zirconate as a solid electrolyte for electrochemical devices applied in metallurgy, Materials Science-Poland 24 (2006) pp 253-260.Search in Google Scholar

Tien TY, Electrical conductivity in the system CaZrO3-ZrO2, Journal of the American Ceramic Society 11(1964) pp.430-433;10.1111/j.1151-2916.1964.tb14430.xSearch in Google Scholar

Janke D, Richter H, Low oxygen activities in steel melts - Possibilities and limits of the solid electrolyte measuring technique, Archiv das Eissenhütenwesen 50 (1979) pp.93-100.Search in Google Scholar

Liu Q, The development of high temperature electrochemical sensors for metallurgical processes, Solid State Ionics 86-88 (1996) 1037-1043.10.1016/0167-2738(96)00248-2Search in Google Scholar

Dudek M, Róg G, Bogusz W, Bućko M, Kozłowska -Róg A, Kompozytowe elektrolity stałe zawierające CaZrO3 jako elementy ogniw elektrochemicznych stosowanych w metalurgii Kompozyty/Composites 4 (2005) pp. 14-19.Search in Google Scholar

Dudek M, Bogusz W, Elektrolity stałe z układu CaO-ZrO2 jako elementy sond elektrochemicznych stosowanych w metalurgii, Polski Biuletyn Ceramiczny 91(2005) pp. 159-166.Search in Google Scholar

Fergus J, Using chemical sensors to control molten metal processing, The Minerals, Metals and Materials Society 52 (2000) pp. 221-230.Search in Google Scholar

Worrel W, Liu Q, Development of an extended - life oxygen sensor for iron and steel melts Solid State Ionics 40-41(1990) pp. 760-763.Search in Google Scholar

Knauth P, Tuller H, Solid State Ionics: Roots, Status and Future Prospects, Journal of the American Ceramic Society 85 (2002) pp. 1654-80.Search in Google Scholar

Fergus JW, Electrolytes for solid oxide fuel cells, Journal of Power Sources 162(2006)pp. 30-40.Search in Google Scholar

eISSN:
2083-4799
ISSN:
1730-2439
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Materials Sciences, Functional and Smart Materials