INFORMAZIONI SU QUESTO ARTICOLO

VDI (1990). VDI - Lexikon Werkstofftechnik. Dusseldorf: VDI-Verlag.Search in Google Scholar

Bell, T. (1977). Source Book on Nitriding (pp. 266 - 278). Metals Park: American Society of Metals.Search in Google Scholar

Mongis, J., Peyre, J. P., & Tournier, C. (1984). Nitriding of microalloyed steels. Heat Treatment of Metals. 11(3), 71 - 75.Search in Google Scholar

(2006). Nanomaterials Handbook. Boca Raton: CRC/Taylor & Francis.Search in Google Scholar

Gu, J. F., Bei, D. H., Pan, J. S., Lu, J., & Lu, K. (2002). Improved nitrogen transport in surface nanocrystallized lowcarbon steels during gaseous nitridation. Materials Letters. 55, 340 - 343.10.1016/S0167-577X(02)00389-0Search in Google Scholar

Tong, W. P., Tao, N. R., Wang, Z. B., Zhang, H. W., Lu, J., & Lu, K. (2004). The formation of ε-Fe3-2 N phase in a nanocrystalline Fe. Scripta Materialia. 50, 647-650.10.1016/j.scriptamat.2003.11.022Search in Google Scholar

Tong, W. P., Liu, C. Z., Wang, W., Tao, N. R., Wang, Z. B., Zuo, L., & He, J. C. (2007). Gaseous nitriding of iron with a nanostructured surface layer. Scripta Materialia. 57, 533 - 536.10.1016/j.scriptamat.2007.05.017Search in Google Scholar

Schaaf, P. (2002). Laser nitriding of metals. Prog. Mater. Sci. 47, 1 - 161.10.1016/S0079-6425(00)00003-7Search in Google Scholar

Nishimaki, K., Ohmae, S., Yamamoto, T. A., & Katsura, M. (1999). Formation of iron-nitrides by the reaction of iron nanoparticles with a stream of ammonia. Nanostructured Materials. 12, 527 - 530.10.1016/S0965-9773(99)00175-0Search in Google Scholar

Inia, D. K., Vredenberg, A. M., Habraken, F. H. P. M., & Boerma, D. O. (1999). Nitrogen uptake and rate-limiting step in low-temperature nitriding of iron. Journal of Applied Physics. 86(2), 810 - 816.10.1063/1.370808Search in Google Scholar

Wu, X. L., Zhong, W., Tang, N. J., Jiang, H. Y., Liu, W., & Du, Y. W. (2004). Magnetic properties and thermal stability of nanocrystalline ε-Fe3N prepared by gas reduction-nitriding method. J. Alloy. Comp. 385, 294 - 297. DOI: 10.1016/j.jallcom.2004.04.127.10.1016/j.jallcom.2004.04.127Search in Google Scholar

Jiraskova, Y., Havlicek, S., Schneeweiss, O., Perina, V., & Blawert, C. (2001). Characterization of iron nitrides prepared by spark erosion, plasma nitriding, and plasma immersion ion implantation. Journal of Magnetism and Magnetic Materials. 234, 477 - 488.10.1016/S0304-8853(01)00426-7Search in Google Scholar

Lin, C.-K., Chen, G.-S., Chen, J.-S., Chin, T.-S., & Lee, P.-Y. (2001). Characterization of iron nitride powders formed by mechanical alloying and atmospheric heat treatment techniques. J. Chin. Inst. Eng. 24(6), 755 - 762.10.1080/02533839.2001.9670671Search in Google Scholar

Schaaf, P. (1998). Iron nitrides and laser nitriding of steel. Hyperfine Interactions. 111, 113 - 119.10.1023/A:1012637230016Search in Google Scholar

Shinno, H., Uehara, M., & Saito, K. (1997). Synthesis of α"-Fe16 N2 iron nitride by means of nitrogen-ion implantation into iron thin films. J. Mater. Sci. 32, 2255 - 2261.10.1023/A:1018568015538Search in Google Scholar

Kunze, J. (1990). Nitrogen and carbon in iron and steel thermodynamics. Berlin: Akademie-Verlag.Search in Google Scholar

Lakhtin, J. M., & Kogan, J. D. (1976). Azotirovanie stali. Moskva: Masinostroenie.Search in Google Scholar

Lehrer, E. (1930). The equilibrium, iron - hydrogen - ammonia. Z. Electrochem. 36, 383 - 392.Search in Google Scholar

Wohlschloegel, M., Welzel, U., & Mittemeijer, E. J. (2007). Unexpected formation of ε iron nitride by gas nitriding of nanocrystalline α-Fe films. Applied Physics Letters. 91, 141901.10.1063/1.2793176Search in Google Scholar

Arabczyk, W., & Wróbel, R. (2003). Study of the Kinetics of Nitriding of Nanocrystalline Iron using TG and XRD methods. Sol. State Phenom. 94, 185 - 188.10.4028/www.scientific.net/SSP.94.185Search in Google Scholar

Cao, M., Wang, R., Fang, X., Cui, Z., Chang, T., & Yang, H. (2001). Preparing γ'-Fe4N ultrafine powder by twice-nitriding method. Powder Technology. 115, 96-98.10.1016/S0032-5910(00)00266-7Search in Google Scholar

Arabczyk, W., & Jakrzewska, M. (1995). The nitriding kinetics of fine-crystalline α-Fe. In: Advanced materials and technologies: 14th International Scientific Conference (pp. 21 - 24). Gliwice: Committee of Metallurgy of the Polish Academy of Science.Search in Google Scholar

Arabczyk, W., & Wróbel, R. (2003). Study of the kinetics of reduction of the nanocrystalline iron nitrides. Annals of Polish Chemical Society. 3(3), 1065 - 1069.Search in Google Scholar

Opalińska, A., Leonelli, C., Łojkowski, W., Pielaszek, R., Grzanka, E., Chudoba, T., Matysiak, H., Wejrzanowski, T., & Kurzydłowski, K. J. (2006). Effect of Pressure on Synthesis of Pr-Doped Zirconia Powders Produced by Microwave-Driven Hydrothermal Reaction. J. Nanomater. 2006(Article ID 98769), 1 - 8. DOI: 10.1155/JNM/2006/98769.10.1155/JNM/2006/98769Search in Google Scholar

Schloegl, R. (1991). In: J. R. Jennings, Catalytic Ammonia Synthesis (p. 19). New York: Plenum Press.Search in Google Scholar

Du Marchie van Voorthuysen, E. H., Chechenin, N. C., & Boerma, D. O. (2002). Low-Temperature Extention of the Lehrer Diagram and the Iron-Nitrogen Phase Diagram. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 33A, 2593 - 2598.10.1007/s11661-002-0380-2Search in Google Scholar

Arabczyk, W., & Zamłynny, J. (1999). Study of the ammonia decomposition over iron catalysts. Catal. Lett. 60(3), 167 - 171.10.1023/A:1019007024041Search in Google Scholar

Love, K. S., & Emmett, P. H. (1941). The Catalytic Decomposition of Ammonia over Iron Synthetic Ammonia Catalysts. J. Amer. Chem. Soc. 63, 3297 - 3308.10.1021/ja01857a019Search in Google Scholar

Logan, S. R., Moss, R. L., & Kemball, C. (1958). The Catalytic Decomposition of Ammonia on Evaporated Iron Films. Trans. Farad. Soc. 54, 922 - 930.10.1039/tf9585400922Search in Google Scholar

Pulkkinen, R. E. E. (1982). Kinetics of nitridation of α-irons containing chromium, molybdenum, and silicon in ammonia - hydrogen mixtures. Metal Science. 16, 37 - 40.10.1179/030634582790427000Search in Google Scholar

Rosendaal, H. C. F., Colijn, P. F., & Scheaf, P. J. (1983). The developement of nitrogen concentration profiles of nitriding iron. Metal. Trans. 14, 395 - 399.10.1007/BF02644217Search in Google Scholar

Keddam, M., Djeghlal, M. E., & Barrallier, L. (2005). A simple diffusion model for the growth kinetics of γ' iron nitride on the pure iron substrate. Appl. Surf. Sci. 242, 369 - 374. DOI: 10.1016/j.apcusc.2004.09.003.Search in Google Scholar

Keddam, M., Djeghlal, M. E., & Barrallier, L. (2004). A diffusion model for simulation of bilayer growth (ε/γ') of nitrided pure iron. Mater. Sci. Eng. A. 378, 475-478. DOI: 10.1016/j.msea.2003.11.066.10.1016/j.msea.2003.11.066Search in Google Scholar

Grabke, H. J. (1968). Reaction of ammonia, nitrogen, and hydrogen on the surface of iron. II. Kinetics of iron nitridation with nitrogen and nitrogen desorption. Ber. Bunsenges. Phys. Chem. 4, 533 - 543.Search in Google Scholar

Grabke, H. J. (1973). Kinetics of nitriding iron as a function of the oxygen activity of the gas. Archiv. Eisenhut. 44, 603 - 608.Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering