INFORMAZIONI SU QUESTO ARTICOLO
Pubblicato online: 28 mar 2011
Pagine: 161 - 172
DOI: https://doi.org/10.2478/v10006-011-0012-3
Parole chiave
This content is open access.
Linear time-invariant networks are modelled by linear differential-algebraic equations with constant coefficients. These equations can be represented by a matrix pencil. Many publications on this subject are restricted to regular matrix pencils. In particular, the influence of the Weierstrass structure of a regular pencil on the poles of its inverse is well known. In this paper we investigate singular matrix pencils. The relations between the Kronecker structure of a singular matrix pencil and the multiplicity of poles at zero of the Moore-Penrose inverse and the Drazin inverse of the rational matrix are investigated. We present example networks whose circuit equations yield singular matrix pencils.