1. bookVolume 17 (2022): Edizione 1 (May 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
2309-5377
Prima pubblicazione
30 Dec 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese
Accesso libero

Products of Integers with Few Nonzero Digits

Pubblicato online: 31 May 2022
Volume & Edizione: Volume 17 (2022) - Edizione 1 (May 2022)
Pagine: 11 - 28
Ricevuto: 30 Jun 2021
Accettato: 23 Nov 2021
Dettagli della rivista
License
Formato
Rivista
eISSN
2309-5377
Prima pubblicazione
30 Dec 2013
Frequenza di pubblicazione
2 volte all'anno
Lingue
Inglese

[1] BENNETT, M.—BUGEAUD, Y.: Perfect powers with three digits, Mathematika 60 (2014), no. 1, 66–84. Search in Google Scholar

[2] BENNETT, M.—BUGEAUD, Y.—MIGNOTTE, M.: Perfect powers with few binary digits and related Diophantine problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), no. 4, 941–953. Search in Google Scholar

[3] BENNETT, M.—BUGEAUD, Y.—MIGNOTTE, M.: Perfect powers with few binary digits and related Diophantine problems II, Math. Proc. Cambridge Philos. Soc. 153 (2012), no. 3, 525–540. Search in Google Scholar

[4] BEUKERS, F.: On the generalized Ramanujan-Nagell equation I,Acta Arith. 38 (1981), 389–410.10.4064/aa-38-4-389-410 Search in Google Scholar

[5] BRILLHART, J.—LEHMER, D. H.—SELFRIDGE, J. L.: New primality criteria and factorizations of 2m± 1, Math. Comp. 29 (1975), 620–647. Search in Google Scholar

[6] BUGEAUD, Y.—KANEKO, H.: On the digital representation of smooth numbers,Math. Proc. Cambridge Philos. Soc. 165 (2018), no. 3, 533–540. Search in Google Scholar

[7] P. Corvaja, U. Zannier, Finiteness of odd perfect powers with four nonzero binary digits, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 2, 715–731. Search in Google Scholar

[8] HARE, K. G.—LAISHRAM, S.—STOLL, T.: The sum of digits of n and n2,Int. J. Number Theory 7 (2011), no. 7, 1737–1752. Search in Google Scholar

[9] HARE, K. G.—LAISHRAM, S.—STOLL, T.: Stolarsky’s conjecture and the sum of digits of polynomial values, Proc. Amer. Math. Soc. 139 (2011), no. 1, 39–49. Search in Google Scholar

[10] LUCA, F.: The Diophantine equation x2 = pa± pb +1, Acta Arith. 112 (2004), no. 1, 87–101. Search in Google Scholar

[11] MADRITSCH, M.—STOLL, T.: On simultaneous digital expansions of polynomial values, Acta Math. Hungar. 143 (2014), no. 1, 192–200. Search in Google Scholar

[12] MARTIN, B.—MAUDUIT, C.—RIVAT, J.: Propriétés locales des chiffres des nombres premiers, J. Inst. Math. Jussieu 18 (2019), no. 1, 189–224. Search in Google Scholar

[13] MAUDUIT, C.—RIVAT, J.: Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math. 2 171 (2010), no. (3), 1591–1646. Search in Google Scholar

[14] MEI, S.-Y.: The sum of digits of polynomial values, Integers 15 (2015), Paper no. A 32, 12 pp. Search in Google Scholar

[15] MELFI, G.: On simultaneous binary expansions of n and n2,J.Number Theory 111 (2005), 248–256.10.1016/j.jnt.2004.12.009 Search in Google Scholar

[16] SAUNDERS, J. C.: Sums of digits in q-ary expansions,Int.J.Number Theory 11 (2015), no. 2, 593–611. Search in Google Scholar

[17] STEWART, C. L.: On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers,Proc. London Math. Soc. (3) 35 (1977), no. 3, 425–447. Search in Google Scholar

[18] STOLARSKY, K. B.: The binary digits of a power, Proc. Amer. Math. Soc. 71 (1978), 1–5.10.1090/S0002-9939-1978-0495823-5 Search in Google Scholar

[19] SZALAY, L.: The equations 2n ± 2m ± 2l = z2, Indag. Math. (N. S.) 13 (2002), no. 1, 131–142. Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo