INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. Bassani, M., Catani, L., Cirillo, C., Mutani, G. (2016) Night-time and daytime operating speed distribution in urban arterials. Transportation Research Part F: Traffic Psychology and Behaviour, 42, 56-69. DOI:10.1016/j.trf.2016.06.020.10.1016/j.trf.2016.06.020 Search in Google Scholar

2. Bassani, M., Dalmazzo, D., Marinelli, G., Cirillo, C. (2014) The effects of road geometrics and traffic regulations on driver-preferred speeds in northern Italy. An exploratory analysis. Transportation Research Part F: Traffic Psychology and Behaviour, 25, 10-26. DOI:10.1016/j.trf.2014.04.019.10.1016/j.trf.2014.04.019 Search in Google Scholar

3. Bhowmik, T., Yasmin, S., Eluru, N. (2019) A multilevel generalized ordered probit fractional split model for analyzing vehicle speed. Analytic Methods in Accident Research, 21, 13-31. DOI:10.1016/j.amar.2018.12.001.10.1016/j.amar.2018.12.001 Search in Google Scholar

4. Brzozowska, L., Brzozowski, K., Nowakowski, J. (2005) An application of artificial neural network to diesel engine modelling. In: Proceedings of the Third Workshop–2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS, 2005, 142-146.10.1109/IDAACS.2005.282958 Search in Google Scholar

5. Chen, D., Chen, L., Liu, J. (2013) Road link traffic speed pattern mining in probe vehicle data via soft computing techniques. Applied Soft Computing, 13(9), 3894-3902, DOI:10.1016/j.asoc.2013.04.020.10.1016/j.asoc.2013.04.020 Search in Google Scholar

6. Chen, Y., Zhu, L., Gonder, J., Young, S., Walkowicz, K. (2017) Data-driven fuel consumption estimation: A multivariate adaptive regression spline approach. Transportation Research Part C: Emerging Technologies, 83, 134-145. DOI:10.1016/j.trc.2017.08.003.10.1016/j.trc.2017.08.003 Search in Google Scholar

7. De Pauw, E., Daniels, S., Brijs, T., Hermans, E., Wets, G. (2014) Behavioural effects of fixed speed cameras on motorways: Overall improved speed compliance or kangaroo jumps? Accident Analysis and Prevention, 73, 132-140. DOI:10.1016/j.aap.2014.08.019.10.1016/j.aap.2014.08.01925217731 Search in Google Scholar

8. Dinh, D.D., Kojima, A., Kubota, H. (2013) Modeling operating speeds on residential streets with a 30 km/h speed limit: regression versus neural networks approach. Journal of the Eastern Asia Society for Transportation Studies, 10, 1650–1669. DOI:10.11175/easts.10.1650. Search in Google Scholar

9. Eluru, N., Chakour, V., Chamberlain, M., Miranda-Moreno, L.F. (2013) Modeling vehicle operating speed on urban roads in Montreal: A panel mixed ordered probit fractional split model. Accident Analysis and Prevention, 59, 125-134. DOI:10.1016/j.aap.2013.05.016.10.1016/j.aap.2013.05.01623792611 Search in Google Scholar

10. Elvik, R. (2012) Speed Limits, Enforcement, and Health Consequences. Annual review of public health, 33, 225-238. DOI:10.1146/annurev-publhealth-031811-124634.10.1146/annurev-publhealth-031811-12463422224882 Search in Google Scholar

11. Figueroa, A.M., Tarko, A.P. (2005) Speed factors on two-lane rural highways in free-flow conditions. Journal of the Transportation Research Board, 1912(1), 49–46. DOI:10.1177/036119810519120010510.1177/0361198105191200105 Search in Google Scholar

12. Frejo, J.R.D., Papamichail, I., Papageorgiou, M., De Schutter, B. (2019) Macroscopic modeling of variable speed limits on freeways. Transportation Research Part C: Emerging Technologies, 100, 15-33. DOI:10.1016/j.trc.2019.01.001.10.1016/j.trc.2019.01.001 Search in Google Scholar

13. Gao, C., Xu, J., Li, Q, Yang, J. (2019) The Effect of Posted Speed Limit on the Dispersion of Traffic Flow Speed. Sustainability, 11, 3594. DOI:10.3390/su11133594.10.3390/su11133594 Search in Google Scholar

14. Gargoum, S. A., El-Basyouny, K. (2016) Exploring the association between speed and safety: A path analysis approach. Accident Analysis and Prevention, 93, 32-40. DOI:10.1016/j.aap.2016.04.029.10.1016/j.aap.2016.04.02927163700 Search in Google Scholar

15. Gayah, V.V., Donnell, E.T., Yu, Z., Li, L. (2018) Safety and operational impacts of setting speed limits below engineering recommendations. Accident Analysis and Prevention, 121, 43-52. DOI:10.1016/j.aap.2018.08.029.10.1016/j.aap.2018.08.02930205285 Search in Google Scholar

16. He, Sheng-Xue (2016) Will a higher free-flow speed lead us to a less congested freeway? Transportation Research Part A: Policy and Practice, 85, 17-38. DOI:10.1016/j.tra.2015.12.003.10.1016/j.tra.2015.12.003 Search in Google Scholar

17. Himes, S.C., Donnell, E.T., Porter, R.J. (2013) Posted speed limit: To include or not to include in operating speed models. Transportation Research Part A: Policy and Practice, 52, 23-33. DOI:10.1016/j.tra.2013.04.003.10.1016/j.tra.2013.04.003 Search in Google Scholar

18. Hu, Z., Smirnova, M.N., Zhang, Y., Smirnov, N.N., Zhu, Z. (2021) Estimation of travel time through a composite ring road by a viscoelastic traffic flow model. Mathematics and Computers in Simulation, 181, 501-521. DOI:10.1016/j.matcom.2020.09.025.10.1016/j.matcom.2020.09.025 Search in Google Scholar

19. International Transport Forum (ITF). 2018. Speed and Crash Risk. International Traffic Safety Data and Analysis Group, Paris, OECD. Search in Google Scholar

20. Karlaftis, M.G., Vlahogianni, E.I. (2011) Statistical methods versus neural networks in transportation research: Differences, similarities and some insights. Transportation Research Part C: Emerging Technologies, 19, 387-399. DOI:10.1016/j.trc.2010.10.004.10.1016/j.trc.2010.10.004 Search in Google Scholar

21. Leong, L.V., Azai, T.A., Goh, W.C., Mahdi, M.B. (2020) The Development and Assessment of Free-Flow Speed Models under Heterogeneous Traffic in Facilitating Sustainable Inter Urban Multilane Highways. Sustainability, 12, 3445. DOI:10.3390/su12083445.10.3390/su12083445 Search in Google Scholar

22. Liu, M.-W., Oeda, Y., Sumi, T. (2016) Modeling free-flow speed according to different water depths—From the viewpoint of dynamic hydraulic pressure. Transportation Research Part D: Transport and Environment, 47, 13-21. DOI:10.1016/j.trd.2016.04.009.10.1016/j.trd.2016.04.009 Search in Google Scholar

23. McFadden, J., Yang, W.T., Durrans, S. (2001) Application of artificial neural networks to predict speeds on two-lane rural highways. Transportation Research Record: Journal of the Transportation Research Board, 1751, 9–17. DOI:10.3141/1751-02.10.3141/1751-02 Search in Google Scholar

24. Ministry of Infrastructure and Development. (2015) Regulation of the Minister of Infrastructure and Development of 20 October 2015 on the classification of road sections with regard to the rate of fatal accidents and due to the road network safety, Item 1845. Warsaw: Polish Government Publishing Service (in Polish). Search in Google Scholar

25. Montella, A., Punzo, V., Chiaradonna, S., Mauriello, F., Montanino, M. (2015) Point-to-point speed enforcement systems: Speed limits design criteria and analysis of drivers’ compliance. Transportation Research Part C, 53, 1-18. DOI:10.1016/j.trc.2015.01.025.10.1016/j.trc.2015.01.025 Search in Google Scholar

26. National Highway Traffic Safety Administration (NHTSA). (2018) Traffic Safety Facts data 2016: Speeding. Washington: National Center for Statistics and Analysis Search in Google Scholar

27. National Road Safety Council (NRSC). (2013) National Road Safety Programme 2013-2020. Warsaw: Ministry of Infrastructure and Development (in Polish). Search in Google Scholar

28. National Road Safety Council (NRSC). (2017) The state of road traffic safety and related activities in 2017. Warsaw: Ministry of Infrastructure and Development (in Polish). Search in Google Scholar

29. OECD. (2018) Speed and crash risk. Paris: ITF/OECD. Search in Google Scholar

30. Osowski, S. (1996) Neural networks in an algorithmic approach. Warsaw: WNT (in Polish). Search in Google Scholar

31. Rothlauf, F. (2006) Representations for Genetic and Evolutionary Algorithms. Springer-Verlag Berlin Heidelberg. Search in Google Scholar

32. Saifizul, A.A., Yamanaka, H., Karim, M.R. (2011) Empirical analysis of gross vehicle weight and free flow speed and consideration on its relation with differential speed limit. Accident Analysis & Prevention, 43(3), 1068-1073. DOI:10.1016/j.aap.2010.12.013.10.1016/j.aap.2010.12.01321376903 Search in Google Scholar

33. Samaras, C., Tsokolis, D., Toffolo, S., Magra, G., Ntziachristos, L., Samaras, Z. (2019) Enhancing average speed emission models to account for congestion impacts in traffic network link-based simulations. Transportation Research Part D: Transport and Environment, 75, 197-210. DOI:10.1016/j.trd.2019.08.029.10.1016/j.trd.2019.08.029 Search in Google Scholar

34. Semeida, A.M. (2014) Application of artificial neural networks for operating speed prediction at horizontal curves: a case study in Egypt. Journal of Modern Transportation, 22(1), 20–29. DOI:10.1007/s40534-014-0033-3.10.1007/s40534-014-0033-3 Search in Google Scholar

35. Silvano, A.P., Koutsopoulos, H.N., Farah, H. (2020) Free flow speed estimation: A probabilistic, latent approach. Impact of speed limit changes and road characteristics. Transportation Research Part A: Policy and Practice, 138, 283-298. DOI:10.1016/j.tra.2020.05.024.10.1016/j.tra.2020.05.024 Search in Google Scholar

36. Sordyl, J., Brzozowski, K. (2018) Estimation of a 15-minute equivalent noise level in the crossroad area. In: Proceedings of the 22nd International Scientific Conference Transport Means, Part I, Trakai, October 2018. Kaunas: Kaunas University of Technology, pp. 342-346. Search in Google Scholar

37. Vadeby, A., Forsman, Å. (2017) Changes in speed distribution: Applying aggregated safety effect models to individual vehicle speeds. Accident Analysis and Prevention, 103, 20-28. DOI:10.1016/j.aap.2017.03.012.10.1016/j.aap.2017.03.01228371638 Search in Google Scholar

38. van Erp, P.B.C., Knoop, V.L., Hoogendoorn, S.P. (2020) On the value of relative flow data. Transportation Research Part C: Emerging Technologies, 113, 2020, 74-90. DOI:10.1016/j.trc.2019.05.001.10.1016/j.trc.2019.05.001 Search in Google Scholar

39. Wilmots, B., Hermans, E., Brijs, T., Wets, G. (2016) Speed control with and without advanced warning sign on the field: An analysis of the effect on driving speed. Safety Science, 85, 23-32. DOI:10.1016/j.ssci.2015.12.014.10.1016/j.ssci.2015.12.014 Search in Google Scholar

40. Yasanthi, R.G.N., Mehran, B. (2020) Modeling free-flow speed variations under adverse road-weather conditions: Case of cold region highways. Case Studies on Transport Policy, 8(1), 22-30. DOI:10.1016/j.cstp.2020.01.003.10.1016/j.cstp.2020.01.003 Search in Google Scholar

41. Yu, B., Chen, Y., Bao, S. (2019) Quantifying visual road environment to establish a speeding prediction model: An examination using naturalistic driving data. Accident Analysis and Prevention, 129, 289-298. DOI:10.1016/j.aap.2019.05.011.10.1016/j.aap.2019.05.01131177040 Search in Google Scholar

eISSN:
1407-6179
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Engineering, Introductions and Overviews, other