Accesso libero

How to Obtain Maximal and Minimal Subranges of Two-Dimensional Vector Measures

 e   
15 nov 2019
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

[1] BIANCHINI, S.—CERF, R.—MARICONDA, C.: Two-dimensional zonoids and Chebyshev measures, J. Math. Anal. Appl. 211 (1997), 512–526.10.1006/jmaa.1997.5486Search in Google Scholar

[2] CANDELORO, D.—MARTELLOTTI, A.: Geometric properties of the range of two-dimensional quasi-measures with respect to the Radon-Nikodym property, Adv. Math. 93 (1992), 9–24.10.1016/0001-8708(92)90023-ESearch in Google Scholar

[3] DAI, P .—FEINBERG, A.: On maximal ranges of vector measures for subsets and purification of transition probabilities, Proc. Amer. Math. Soc. 139 (2011), 4497–4511.10.1090/S0002-9939-2011-10860-8Search in Google Scholar

[4] LEGUT, J.—WILCZYŃSKI, M.: How to obtain a range of a nonatomic vector measure in2, J. Math. Anal. Appl. 394 (2012), 102–111.10.1016/j.jmaa.2012.04.062Search in Google Scholar

[5] LEHMANN, E. L.—ROMANO, J. P.: Testing Statistical Hypotheses. Springer Science + Business Media. Inc., New York, 1971.Search in Google Scholar

[6] LYAPOUNOFF, A. A.: Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 465–478. (In Russian)Search in Google Scholar

[7] NEYMAN, A.: Decomposition of ranges of vector measures,IsraelJ.Math. 40 (1981), 54–64.10.1007/BF02761817Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
3 volte all'anno
Argomenti della rivista:
Matematica, Matematica generale