Accesso libero

A Short Proof of Alienation of Additivity from Quadraticity

  
15 nov 2019
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Without the use of pexiderized versions of abstract polynomials theory, we show that on 2-divisible groups the functional equation

f(x+y)+g(x+y)+g(x-y)=f(x)+f(y)+2g(x)+2g(y)f\left( {x + y} \right) + g\left( {x + y} \right) + g\left( {x - y} \right) = f(x) + f(y) + 2g(x) + 2g(y)

forces the unknown functions f and g to be additive and quadratic, respectively, modulo a constant.

Motivated by the observation that the equation

f(x+y)+f(x2)=f(x)+f(y)+f(x2)f\left( {x + y} \right) + f({x^2}) = f(x) + f(y) + f({x^2})

implies both the additivity and multiplicativity of f, we deal also with the alienation phenomenon of equations in a single and several variables.

Lingua:
Inglese
Frequenza di pubblicazione:
3 volte all'anno
Argomenti della rivista:
Matematica, Matematica generale